55 research outputs found
Classical Analysis of Phenomenological Potentials for Metallic Clusters
The classical trajectories of single particle motion in a Wodds-Saxon and a
modified Nilsson potential are studied for axial quadrupole deformation. Both
cases give rise to chaotic behaviour when the deformation in the Woods-Saxon
and the l**2 term in the modified Nilsson potential are turned on. Important
similarities, in particular with regard to the shortest periodic orbits, have
been found.Comment: 9 pages LaTex + 4 figures available via e-mail requests from the
authors, to appear in Phys.Rev.Let
Semiclassical analysis of the lowest-order multipole deformations of simple metal clusters
We use a perturbative semiclassical trace formula to calculate the three
lowest-order multipole (quadrupole \eps_2, octupole \eps_3, and
hexadecapole \eps_4) deformations of simple metal clusters with atoms in their ground states. The self-consistent mean field of the
valence electrons is modeled by an axially deformed cavity and the oscillating
part of the total energy is calculated semiclassically using the shortest
periodic orbits. The average energy is obtained from a liquid-drop model
adjusted to the empirical bulk and surface properties of the sodium metal. We
obtain good qualitative agreement with the results of quantum-mechanical
calculations using Strutinsky's shell-correction method.Comment: LaTeX file (v2) 6 figures, to be published in Phys. Lett.
Electronic-structure-induced deformations of liquid metal clusters
Ab initio molecular dynamics is used to study deformations of sodium clusters
at temperatures K. Open-shell Na cluster has two shape
isomers, prolate and oblate, in the liquid state. The deformation is stabilized
by opening a gap at the Fermi level. The closed-shell Na remains magic also
at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request
(e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.
Deformed Harmonic Oscillators for Metal Clusters: Analytic Properties and Supershells
The analytic properties of Nilsson's Modified Oscillator (MO), which was
first introduced in nuclear structure, and of the recently introduced, based on
quantum algebraic techniques, 3-dimensional q-deformed harmonic oscillator
(3-dim q-HO) with Uq(3) > SOq(3) symmetry, which is known to reproduce
correctly in terms of only one parameter the magic numbers of alkali clusters
up to 1500 (the expected limit of validity for theories based on the filling of
electronic shells), are considered. Exact expressions for the total energy of
closed shells are determined and compared among them. Furthermore, the
systematics of the appearance of supershells in the spectra of the two
oscillators is considered, showing that the 3-dim q-HO correctly predicts the
first supershell closure in alkali clusters without use of any extra parameter.Comment: 25 pages LaTeX plus 21 postscript figure
Semiclassical theory of surface plasmons in spheroidal clusters
A microscopic theory of linear response based on the Vlasov equation is
extended to systems having spheroidal equilibrium shape. The solution of the
linearized Vlasov equation, which gives a semiclassical version of the random
phase approximation, is studied for electrons moving in a deformed equilibrium
mean field. The deformed field has been approximated by a cavity of spheroidal
shape, both prolate and oblate. Contrary to spherical systems, there is now a
coupling among excitations of different multipolarity induced by the
interaction among constituents. Explicit calculations are performed for the
dipole response of deformed clusters of different size. In all cases studied
here the photoabsorption strength for prolate clusters always displays a
typical double-peaked structure. For oblate clusters we find that the
high--frequency component of the plasmon doublet can get fragmented in the
medium size region (). This fragmentation is related to the
presence of two kinds of three-dimensional electron orbits in oblate cavities.
The possible scaling of our semiclassical equations with the valence electron
number and density is investigated.Comment: 23 pages, 8 figures, revised version, includes discussion of scalin
Periodic orbit theory for realistic cluster potentials: The leptodermous expansion
The formation of supershells observed in large metal clusters can be
qualitatively understood from a periodic-orbit-expansion for a spherical
cavity. To describe the changes in the supershell structure for different
materials, one has, however, to go beyond that simple model. We show how
periodic-orbit-expansions for realistic cluster potentials can be derived by
expanding only the classical radial action around the limiting case of a
spherical potential well. We give analytical results for the leptodermous
expansion of Woods-Saxon potentials and show that it describes the shift of the
supershells as the surface of a cluster potential gets softer. As a byproduct
of our work, we find that the electronic shell and supershell structure is not
affected by a lattice contraction, which might be present in small clusters.Comment: 15 pages RevTex, 11 eps figures, additional information at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/users/koch/Diss
Electronic entropy, shell structure, and size-evolutionary patterns of metal clusters
We show that electronic-entropy effects in the size-evolutionary patterns of
relatively small (as small as 20 atoms), simple-metal clusters become prominent
already at moderate temperatures. Detailed agreement between our
finite-temperature-shell-correction-method calculations and experimental
results is obtained for certain temperatures. This agreement includes a
size-dependent smearing out of fine-structure features, accompanied by a
measurable reduction of the heights of the steps marking major-shell and
subshell closings, thus allowing for a quantitative analysis of cluster
temperatures.Comment: Latex/Revtex, 4 pages with 3 Postscript figure
Rough droplet model for spherical metal clusters
We study the thermally activated oscillations, or capillary waves, of a
neutral metal cluster within the liquid drop model. These deformations
correspond to a surface roughness which we characterize by a single parameter
. We derive a simple analytic approximate expression determining
as a function of temperature and cluster size. We then estimate the
induced effects on shell structure by means of a periodic orbit analysis and
compare with recent data for shell energy of sodium clusters in the size range
. A small surface roughness \AA~ is seen to
give a reasonable account of the decrease of amplitude of the shell structure
observed in experiment. Moreover -- contrary to usual Jahn-Teller type of
deformations -- roughness correctly reproduces the shape of the shell energy in
the domain of sizes considered in experiment.Comment: 20 pages, 4 figures, important modifications of the presentation, to
appear in Phys. Rev.
Group theoretical analysis of symmetry breaking in two-dimensional quantum dots
We present a group theoretical study of the symmetry-broken unrestricted
Hartree-Fock orbitals and electron densities in the case of a two-dimensional
N-electron single quantum dot (with and without an external magnetic field).
The breaking of rotational symmetry results in canonical orbitals that (1) are
associated with the eigenvectors of a Hueckel hamiltonian having sites at the
positions determined by the equilibrium molecular configuration of the
classical N-electron problem, and (2) transform according to the irreducible
representations of the point group specified by the discrete symmetries of this
classical molecular configuration. Through restoration of the total-spin and
rotational symmetries via projection techniques, we show that the point-group
discrete symmetry of the unrestricted Hartree-Fock wave function underlies the
appearance of magic angular momenta (familiar from exact-diagonalization
studies) in the excitation spectra of the quantum dot. Furthermore, this
two-step symmetry-breaking/symmetry-restoration method accurately describes the
energy spectra associated with the magic angular momenta.Comment: A section VI.B entitled "Quantitative description of the lowest
rotational band" has been added. 16 pages. Revtex with 10 EPS figures. A
version of the manuscript with high quality figures is available at
http://calcite.physics.gatech.edu/~costas/uhf_group.html For related papers,
see http://www.prism.gatech.edu/~ph274c
Ionic and electronic structure of sodium clusters up to N=59
We determined the ionic and electronic structure of sodium clusters with even
electron numbers and 2 to 59 atoms in axially averaged and three-dimensional
density functional calculations. A local, phenomenological pseudopotential that
reproduces important bulk and atomic properties and facilitates structure
calculations has been developed. Photoabsorption spectra have been calculated
for , , and to
. The consistent inclusion of ionic structure considerably
improves agreement with experiment. An icosahedral growth pattern is observed
for to . This finding is supported by
photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality
can be requested from the author
- …