16 research outputs found

    HIV-1 Inhibits Autophagy in Bystander Macrophage/Monocytic Cells through Src-Akt and STAT3

    Get PDF
    Autophagy is a homeostatic mechanism of lysosomal degradation. Defective autophagy has been linked to various disorders such as impaired control of pathogens and neurodegeneration. Autophagy is regulated by a complex array of signaling pathways that act upstream of autophagy proteins. Little is known about the role of altered regulatory signaling in disorders associated with defective autophagy. In particular, it is not known if pathogens inhibit autophagy by modulation of upstream regulatory pathways. Cells infected with HIV-1 blocked rapamycin-induced autophagy and CD40-induced autophagic killing of Toxoplasma gondii in bystander (non-HIV-1 infected) macrophage/monocytic cells. Blockade of autophagy was dependent on Src-Akt and STAT3 triggered by HIV-1 Tat and IL-10. Neutralization of the upstream receptors VEGFR, β-integrin or CXCR4, as well as of HIV-1 Tat or IL-10 restored autophagy in macrophage/monocytic cells exposed to HIV-1-infected cells. Defective autophagic killing of T. gondii was detected in monocyte-derived macrophages from a subset of HIV-1+ patients. This defect was also reverted by neutralization of Tat or IL-10. These studies revealed that a pathogen can impair autophagy in non-infected cells by activating counter-regulatory pathways. The fact that pharmacologic manipulation of cell signaling restored autophagy in cells exposed to HIV-1-infected cells raises the possibility of therapeutic manipulation of cell signaling to restore autophagy in HIV-1 infection

    Vinculin Controls PTEN Protein Level by Maintaining the Interaction of the Adherens Junction Protein β-Catenin with the Scaffolding Protein MAGI-2

    Get PDF
    PTEN is a frequently mutated tumor suppressor in malignancies. Interestingly, some malignancies exhibit undetectable PTEN protein without mutations or loss of PTEN mRNA. The cause(s) for this reduction in PTEN is unknown. Cancer cells frequently exhibit loss of cadherin, beta-catenin, alpha-catenin and/or vinculin, key elements of adherens junctions. Here we show that F9 vinculin-null (vin(-/-)) cells lack PTEN protein despite normal PTEN mRNA levels. Their PTEN protein expression was restored by transfection with vinculin or by inhibition of PTEN degradation. F9 vin(-/-) cells express PTEN protein upon transfection with a vinculin fragment (amino acids 243-1066) that is capable of interacting with alpha-catenin but unable to target into focal adhesions. On the other hand, disruption of adherens junctions with an E-cadherin blocking antibody reduced PTEN protein to undetectable levels in wild-type F9 cells. PTEN protein levels were restored in F9 vin(-/-) cells upon transfection with an E-cadherin-alpha-catenin fusion protein, which targets into adherens junctions and interacts with beta-catenin in F9 vin(-/-) cells. beta-Catenin is known to interact with MAGI-2. MAGI-2 interaction with PTEN in the cell membrane is known to prevent PTEN protein degradation. Thus, MAGI-2 overexpression in F9 vin(-/-) cells restored PTEN protein levels. Moreover, expression of vinculin mutants that reinstated the disrupted interactions of beta-catenin with MAGI-2 in F9 vin(-/-) cells also restored PTEN protein levels. These studies indicate that PTEN protein levels are dependent on the maintenance of beta-catenin-MAGI-2 interaction, in which vinculin plays a critical role

    HIV-1 Inhibits Autophagy in Bystander Macrophage/Monocytic Cells through Src-Akt and STAT3

    Get PDF
    Autophagy is a homeostatic mechanism of lysosomal degradation. Defective autophagy has been linked to various disorders such as impaired control of pathogens and neurodegeneration. Autophagy is regulated by a complex array of signaling pathways that act upstream of autophagy proteins. Little is known about the role of altered regulatory signaling in disorders associated with defective autophagy. In particular, it is not known if pathogens inhibit autophagy by modulation of upstream regulatory pathways. Cells infected with HIV-1 blocked rapamycin-induced autophagy and CD40-induced autophagic killing of Toxoplasma gondii in bystander (non-HIV-1 infected) macrophage/monocytic cells. Blockade of autophagy was dependent on Src-Akt and STAT3 triggered by HIV-1 Tat and IL-10. Neutralization of the upstream receptors VEGFR, β-integrin or CXCR4, as well as of HIV-1 Tat or IL-10 restored autophagy in macrophage/monocytic cells exposed to HIV-1-infected cells. Defective autophagic killing of T. gondii was detected in monocyte-derived macrophages from a subset of HIV-1+ patients. This defect was also reverted by neutralization of Tat or IL-10. These studies revealed that a pathogen can impair autophagy in non-infected cells by activating counter-regulatory pathways. The fact that pharmacologic manipulation of cell signaling restored autophagy in cells exposed to HIV-1-infected cells raises the possibility of therapeutic manipulation of cell signaling to restore autophagy in HIV-1 infection

    Proinflammatory Responses Induced by CD40 in Retinal Endothelial and Müller Cells are Inhibited by Blocking CD40-Traf2,3 or CD40-Traf6 Signaling

    No full text
    Citation: Portillo J-AC, Schwartz I, Zarini S, et al. Proinflammatory responses induced by CD40 in retinal endothelial and Müller cells are inhibited by blocking CD40-TRAF2,3 or CD40-TRAF6 signaling. Invest Ophthalmol Vis Sci. 2014;55:8590-8597. DOI:10.1167/iovs.14-15340 PURPOSE. The cell surface receptor CD40 is required for the development of retinopathies induced by diabetes and ischemia/reperfusion. The purpose of this study was to identify signaling pathways by which CD40 triggers proinflammatory responses in retinal cells, since this may lead to pharmacologic targeting of these pathways as novel therapy against retinopathies. METHODS. Retinal endothelial and Müller cells were transduced with vectors that encode wildtype CD40 or CD40 with mutations in sites that recruit TNF receptor associated factors (TRAF): TRAF2,3 (DT2,3), TRAF6 (DT6), or TRAF2,3 plus TRAF6 (DT2,3,6). Cells also were incubated with CD40-TRAF2,3 or CD40-TRAF6 blocking peptides. We assessed intercellular adhesion molecule-1 (ICAM-1), CD40, monocyte chemoattractant protein-1 (MCP-1), VEGF, and prostaglandin E 2 (PGE 2 ) by fluorescence-activated cell sorting (FACS), ELISA, or mass spectrometry. Mice (B6 and CD40 À/À ) were made diabetic using streptozotocin. The MCP-1 mRNA was assessed by real-time PCR. RESULTS. The CD40-mediated ICAM-1 upregulation in endothelial and Müller cells was markedly inhibited by expression of CD40 DT2,3 or CD40 DT6. The CD40 was required for MCP-1 mRNA upregulation in the retina of diabetic mice. The CD40 stimulation of endothelial and Müller cells enhanced MCP-1 production that was markedly diminished by CD40 DT2,3 or CD40 DT6. Similar results were obtained in cells incubated with CD40-TRAF2,3 or CD40-TRAF6 blocking peptides. The CD40 ligation upregulated PGE 2 and VEGF production by Müller cells, that was inhibited by CD40 DT2,3 or CD40 DT6. All cellular responses tested were obliterated by expression of CD40 DT2,3,6. CONCLUSIONS. Blockade of a single CD40-TRAF pathway was sufficient to impair ICAM-1, MCP-1, PGE 2 , and VEGF upregulation in retinal endothelial and/or Müller cells. Blockade of CD40-TRAF signaling may control retinopathies
    corecore