149 research outputs found

    Directional perfect absorption using deep subwavelength low-permittivity films

    Get PDF
    We experimentally demonstrate single beam directional perfect absorption (to within experimental accuracy) of p-polarized light in the near-infrared using unpatterned, deep subwavelength films of indium tin oxide (ITO) on Ag. The experimental perfect absorption occurs slightly above the epsilon-near-zero (ENZ) frequency of ITO, where the permittivity is less than 1 in magnitude. Remarkably, we obtain perfect absorption for films whose thickness is as low as similar to 1/50th of the operating free-space wavelength and whose single pass attenuation is only similar to 5%. We further derive simple analytical conditions for perfect absorption in the subwavelength-film regime that reveal the constraints that the thin layer permittivity must satisfy if perfect absorption is to be achieved. Then, to get a physical insight on the perfect absorption properties, we analyze the eigenmodes of the layered structure by computing both the real-frequency/complex-wavenumber and the complex-frequency/real-wavenumber modal dispersion diagrams. These analyses allow us to attribute the experimental perfect absorption condition to the crossover between bound and leaky behavior of one eigenmode of the layered structure. Both modal methods show that perfect absorption occurs at a frequency slightly larger than the ENZ frequency, in agreement with experimental results, and both methods predict a second perfect absorption condition at higher frequencies, attributed to another crossover between bound and leaky behavior of the same eigenmode. Our results greatly expand the list of materials that can be considered for use as ultrathin perfect absorbers and provide a methodology for the design of absorbing systems at any desired frequencyopen9

    Flexible and Transparent All-Graphene Circuits for Quaternary Digital Modulations

    Full text link
    In modern communication system, modulation is a key function that embeds the baseband signal (information) into a carrier wave so that it can be successfully broadcasted through a medium such as air or cables. A flexible signal modulation scheme is hence essential to wide range of applications based on flexible electronics. Here we report a fully bendable all-graphene modulator circuit with the capability to encode a carrier signal with quaternary digital information for the first time. By exploiting the ambipolarity and the nonlinearity in a graphene transistor, we demonstrated two types of quaternary modulation schemes: 4-ary amplitude-shift keying (4-ASK) and quadrature phase-shift keying (QPSK). Remarkably, 4-ASK and QPSK can be realized with just 1 and 2 all-graphene transistors, respectively, representing a drastic reduction in circuit complexity when compared with conventional digital modulators. In addition, the circuit is not only flexible but also highly transparent (~95% transmittance) owing to their all-graphene design with every component (channel, interconnects, load resistor, and source/drain/gate electrodes) fabricated from graphene films. Taken together, these results represent a significant step toward achieving a high speed communication system that can be monolithically integrated on a flexible and transparent platform.Comment: 29 pages, 8 figures, 1 tabl

    Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures

    Get PDF
    Transparent electrodes with superior flexibility and stretchability as well as good electrical and optical properties are required for applications in wearable electronics with comfort designs and high performances. Here, we present hybrid nanostructures as stretchable and transparent electrodes based on graphene and networks of metal nanowires, and investigate their optical, electrical, and mechanical properties. High electrical and optical characteristics, superb bendability (folded in half), excellent stretchability (10,000 times in stretching cycles with 100% in tensile strain toward a uniaxial direction and 30% in tensile strain toward a multi-axial direction), strong robustness against electrical breakdown and thermal oxidation were obtained through comprehensive study. We believe that these results suggest a substantial promise application in future electronicsopen1

    Research in Development on Wireless Health Care of Infants

    No full text

    Mass mortality of Northern Map Turtles (Graptemys geographica)

    Get PDF
    We report a mass mortality of Northern Map Turtles (Graptemys geographica [LeSueur, 1817]) on the north shore of Lake Erie, Ontario, Canada. Thirty-five dead adult females were recovered from a nesting area over a period of four weeks. Predation and boat strikes were both excluded as potential cause of death, but the actual cause could not be determined because of the poor condition of the carcasses. Other possible explanations for the mortality include poisoning, drowning, and infection with an unidentified pathogen. Mass mortality in long-lived species, such as turtles, can have long-term effects on population growth and is a cause for concern in a species at risk
    corecore