158 research outputs found

    Time Optimal Control in Spin Systems

    Get PDF
    In this paper, we study the design of pulse sequences for NMR spectroscopy as a problem of time optimal control of the unitary propagator. Radio frequency pulses are used in coherent spectroscopy to implement a unitary transfer of state. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formulation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse design are constantly arising. Moreover, the general proofs are no more difficult than the specific problems of current interest. From a general control theory perspective, the problems we want to study have the following character. Suppose we are given a controllable right invariant system on a compact Lie group, what is the minimum time required to steer the system from some initial point to a specified final point? In NMR spectroscopy and quantum computing, this translates to, what is the minimum time required to produce a unitary propagator? We also give an analytical characterization of maximum achievable transfer in a given time for the two spin system.Comment: 20 Pages, 3 figure

    Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents

    Get PDF
    Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new approaches for the treatment of certain cancers. Growth factor receptor bound protein 2 (Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in many pathogenic processes. One of the primary functions of Grb2 is to bind to specific phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain. Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will summarize important contributions to these efforts. The presentation will be thematically arranged according to the region of peptide modified, proceeding from the N-terminus to the C-terminus, with a special section devoted to aspects of conformational constraint

    Exploring Chromophore-Binding Pocket: High-Resolution Solid-State 1H–13C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme

    Get PDF
    High-resolution two-dimensional (2D) 1H–13C heteronuclear correlation spectra are recorded for selective observation of interfacial 3–5.5 Å contacts of the uniformly 13C-labeled phycocyanobilin (PCB) chromophore with its unlabeled binding pocket. The experiment is based on a medium- and long-distance heteronuclear correlation (MELODI–HETCOR) method. For improving 1H spectral resolution, a windowed phase-modulated Lee–Goldburg (wPMLG) decoupling scheme is applied during the t1 evolution period. Our approach allows for identification of chromophore–protein interactions, in particular for elucidation of the hydrogen-bonding networks and charge distributions within the chromophore-binding pocket. The resulting pulse sequence is tested on the cyanobacterial (Cph1) phytochrome sensory module (residues 1–514, Cph1Δ2) containing uniformly 13C- and 15N-labeled PCB chromophore (u-[13C,15N]-PCB-Cph1Δ2) at 17.6 T
    • …
    corecore