378 research outputs found

    Mott Insulator to Superfluid transition in Bose-Bose mixtures in a two-dimensional lattice

    Full text link
    We perform a numeric study (Worm algorithm Monte Carlo simulations) of ultracold two-component bosons in two-dimensional optical lattices. We study how the Mott insulator to superfluid transition is affected by the presence of a second superfluid bosonic species. We find that, at fixed interspecies interaction, the upper and lower boundaries of the Mott lobe are differently modified. The lower boundary is strongly renormalized even for relatively low filling factor of the second component and moderate (interspecies) interaction. The upper boundary, instead, is affected only for large enough filling of the second component. Whereas boundaries are renormalized we find evidence of polaron-like excitations. Our results are of interest for current experimental setups.Comment: 4 pages, 3 figures, accepted as PRA Rapid Communicatio

    On-site number statistics of ultracold lattice bosons

    Get PDF
    We study on-site occupation number fluctuations in a system of interacting bosons in an optical lattice. The ground-state distribution is obtained analytically in the limiting cases of strong and weak interaction, and by means of exact Monte Carlo simulations in the strongly correlated regime. As the interaction is increased, the distribution evolves from Poissonian in the non-interacting gas to a sharply peaked distribution in the Mott-insulator (MI) regime. In the special case of large occupation numbers, we demonstrate analytically and check numerically that there exists a wide interval of interaction strength, in which the on-site number fluctuations remain Gaussian and are gradually squeezed until they are of order unity near the superfluid (SF)-MI transition. Recently, the on-site number statistics were studied experimentally in a wide range of lattice potential depths [Phys. Rev. Lett. \textbf{96}, 090401 (2006)]. In our simulations, we are able to directly reproduce experimental conditions using temperature as the only free parameter. Pronounced temperature dependence suggests that measurements of on-site atom number fluctuations can be employed as a reliable method of thermometry in both SF and MI regimes.Comment: 9 pages, 4 figure

    Supersolid phase with cold polar molecules on a triangular lattice

    Full text link
    We study a system of heteronuclear molecules on a triangular lattice and analyze the potential of this system for the experimental realization of a supersolid phase. The ground state phase diagram contains superfluid, solid and supersolid phases. At finite temperatures and strong interactions there is an additional emulsion region, in contrast to similar models with short-range interactions. We derive the maximal critical temperature TcT_c and the corresponding entropy S/N=0.04(1)S/N = 0.04(1) for supersolidity and find feasible experimental conditions for its realization.Comment: 4 pages, 4 figure

    Adverse reactions to oncologic drugs: spontaneous reporting and signal detection

    Get PDF
    Oncology is one of the areas of medicine with the most active research being conducted on new drugs. New pharmacological entities frequently enter the clinical arena, and therefore, the safety profile of anticancer products deserves continuous monitoring. However, only very severe and (unusual) suspected adverse drug reactions (ADRs) are usually reported, since cancer patients develop ADRs very frequently and some practical selectivity must be used. Notably, a recent study was able to identify 76 serious ADRs reported in updated drug labels of oncologic drugs and 50% of them (n = 38) were potentially fatal. Of these, 49 and 58%, respectively, were not described in initial drug labels. The aims of this article are to provide an overview about spontaneous reporting of ADRs of oncologic drugs and to discuss the available methods to analyze the safety of anticancer drugs using databases of spontaneous ADR reporting

    Superfluidity of flexible chains of polar molecules

    Full text link
    We study properties of quantum chains in a gas of polar bosonic molecules confined in a stack of N identical one- and two- dimensional optical lattice layers, with molecular dipole moments aligned perpendicularly to the layers. Quantum Monte Carlo simulations of a single chain (formed by a single molecule on each layer) reveal its quantum roughening transition. The case of finite in-layer density of molecules is studied within the framework of the J-current model approximation, and it is found that N-independent molecular superfluid phase can undergo a quantum phase transition to a rough chain superfluid. A theorem is proven that no superfluidity of chains with length shorter than N is possible. The scheme for detecting chain formation is proposed.Comment: Submitted to Proceedings of the QFS2010 satellite conference "Cold Gases meet Many-Body Theory", Grenoble, August 7, 2010. This is the expanded version of V.

    Quantum magnetism and counterflow supersolidity of up-down bosonic dipoles

    Full text link
    We study a gas of dipolar Bosons confined in a two-dimensional optical lattice. Dipoles are considered to point freely in both up and down directions perpendicular to the lattice plane. This results in a nearest neighbor repulsive (attractive) interaction for aligned (anti-aligned) dipoles. We find regions of parameters where the ground state of the system exhibits insulating phases with ferromagnetic or anti-ferromagnetic ordering, as well as with rational values of the average magnetization. Evidence for the existence of a novel counterflow supersolid quantum phase is also presented.Comment: 8 pages, 6 figure

    Effect of Doublon-Holon Binding on Mott transition---Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models

    Full text link
    To understand the mechanism of Mott transitions in case of no magnetic influence, superfluid-insulator (Mott) transitions in the S=0 Bose Hubbard model at unit filling are studied on the square and triangular lattices, using a variational Monte Carlo method. In trial many-body wave functions, we introduce various types of attractive correlation factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), which play a central role for Mott transitions, in addition to the onsite repulsive (Gutzwiller) factor. By optimizing distance-dependent parameters, we study various properties of this type of wave functions. With a hint from the Mott transition arising in a completely D-H bound state, we propose an improved picture of Mott transitions, by introducing two characteristic length scales, the D-H binding length Îľdh\xi_{\rm dh} and the minimum D-D exclusion length Îľdd\xi_{\rm dd}. Generally, a Mott transition occurs when Îľdh\xi_{\rm dh} becomes comparable to Îľdd\xi_{\rm dd}. In the conductive (superfluid) state, domains of D-H pairs overlap with each other (Îľdh>Îľdd\xi_{\rm dh}>\xi_{\rm dd}); thereby D and H can propagate independently as density carriers by successively exchanging the partners. In contrast, intersite repulsive Jastrow (D-D and H-H) factors have little importance for the Mott transition.Comment: 16 pages, 22 figures, submitted to J. Phys. Soc. Jp

    Scaling property of the critical hopping parameters for the Bose-Hubbard model

    Full text link
    Recently precise results for the boundary between the Mott insulator phase and the superfluid phase of the homogeneous Bose-Hubbard model have become available for arbitrary integer filling factor g and any lattice dimension d > 1. We use these data for demonstrating that the critical hopping parameters obey a scaling relationship which allows one to map results for different g onto each other. Unexpectedly, the mean-field result captures the dependence of the exact critical parameters on the filling factor almost fully. We also present an approximation formula which describes the critical parameters for d > 1 and any g with high accuracy.Comment: 5 pages, 5 figures. to appear in EPJ
    • …
    corecore