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Summary 

Oncology is one of the medical areas with the most active research on new drugs. New 

pharmacological entities frequently enter in the clinical arena and therefore the safety profile of 

anticancer products deserve continuous monitoring. However, only very severe and unusual 

suspected adverse drug reactions (ADRs) are usually reported, since cancer patients have develop 

ADRs very frequently and some practical selectivity must be used. Notably, a recent study was able 

to identify 76 serious ADRs reported in updated drug labels of oncologic drugs, and 50% (n=38) 

were potentially fatal. Of these, 49% and 58%, respectively, were not described in initial drug 

labels. The aims of this review are to provide an overview about spontaneous reporting of ADRs of 

oncologic drugs and to discuss show the available methods to analyze the safety of anticancer drugs 

using databases of spontaneous ADRs reporting.  
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Introduction 

Spontaneous reporting of adverse drug reactions (ADRs) is traditionally considered as the best 

method for generating signals of potential risk associated with pharmacological treatments. This 

approach usually allows early identification of safety problems associated with drugs and enables 

health authorities to issue regulatory measures to prevent the harm to many patients as much as 

possible. However, there are some fields of medicine in which the efficiency of spontaneous 

reporting in the assessment of drug safety is debated or should be integrated with different 

approaches. One of these fields is oncology. Pharmacovigilance dedicated to detection of ADRs 

associated with antineoplastic agents in cancer patients requires frequent updates, since oncology is 

one of the medical fields with the most active research and development of new drugs. These drugs 

are often “first in class drugs”, acting on molecular receptors never targeted before, for which the 

limited knowledge exists. Therefore particular caution in the safety monitoring of these medicinal 

products is required. Furthermore, the “biotechnological” revolution of pharmacological therapies 

involved widely oncologic drugs, with several monoclonal antibodies approved for clinical use 

being indicated for treatment of cancers in different tissues. It would be important to verify whether 

traditional methods employed for signal detection through the evaluation of datasets of 

spontaneously reported ADRs, can be applied to this “superclass” of drugs, or a different approach 

could be considered.   

Seruga and coworkers [1] compared the updated drug labels with the respective drug labels 

published after first approval of 12 anticancer target agents to assess the number of clinically 

relevant ADRs identified in the post-marketing period. This study was able to identify 76 serious 

ADRs reported in updated drug labels, and 50% (n = 38) were potentially fatal. Of these, 49% and 

58%, respectively, were not described in initial drug labels. After a median of 4.3 years between 

initial approval and update of drug labels, 42% (n = 5) of targeted cancer agents received one or 

more boxed warnings [1]. Although this circumstance can be in part due to a delay in the update of 

drug labels, particularly for those approved with accelerated procedures [2], these results 

demonstrated the need for an accurate ADR reporting after approval to reduce the time of 

identification of relevant safety issues associated with oncologic drugs. Another study showed that 

potentially fatal ADRs to oncologic drugs may be identified as many as 36 years after a drug 

received marketing authorization (e.g. thioguanine-associated bone-marrow depression in 

genetically susceptible patients). Although this delay could be due to “primitive” methods of 

assessment and not adequate Pharmacovigilance systems (thioguanine was approved in 1965), and 

fortunately the time was reasonably reduced at present [3], it is conceivable that  an under-reporting 
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contribute at least in part to prolong the time of ADR identification. Under-reporting is a common 

problem in Pharmacovigilance and it is likely to be higher for oncologic drugs. The perception of 

risk/benefit of a treatment by physicians is usually conditioned by the clinical severity and 

prognosis of the disease to be treated. On this basis, ADRs involving oncologic drugs may be 

sometimes regarded as a secondary problem, and their spontaneous reporting is usually considered 

as a low-priority activity in the daily life clinical practice. Since cancer patients are usually quite ill 

and the antineoplastic agents used are often quite toxic, the threshold for spontaneous ADR 

reporting is unfortunately fairly high. Their reasoning for reporting only very severe and unusual 

suspected ADRs is that their patients experience ADRs very frequently and some practical 

discretion must be used in reporting. Furthermore, it is conceivable that the oncologist tends to 

under-evaluate the importance of recording any adverse event that is not strictly related with the 

disease progression. Sometimes, identification of a causal relationship between an event and a 

treatment is not easy with such complex patients, and he may tend to ascribe the adverse event to 

another underlying non-cancer disease, therapy or cancer progression. Moreover, experience has 

shown that oncologists are more prone to report new ADRs to their peers (oncology meetings and 

journals) than to national spontaneous reporting systems. Finally, several toxicities associated with 

traditional anticancer drugs are frequent and expected (i.e. bone marrow depression, nausea, 

vomiting, alopecia), and the oncologist is well trained to recognize them and “preferentially” 

reporting these effects both in pre- and post-marketing phases of drug development.  With regard 

for the above mentioned issues, the involvement of well-trained patients in ADR reporting using 

online tools would be an interesting approach to improve the efficiency of Pharmacovigilance of 

oncologic drugs. In this context, promising preliminary results have been obtained by the group 

coordinated by Basch at the Memorial Sloan-Kettering Cancer Center in New York [4, 5].  

Besides underreporting, several authors have suggested plausible causes to explain the relatively 

high number of, at least initially, not well characterized clinically relevant ADRs associated with 

anticancer drugs, and the time required for their identification  [6-8]. One of the major concerns 

appears to be the use of inadequate adverse event report form. Belknap and coworkers (2010) [7] 

noted that only a small number of items, considered as essential for the definition of an adverse 

events (4/34), is listed in the Institutional Review Board (IRB) report form used for clinical trials in 

49 USA cancer centers. Furthermore, it is important to note that the amount and quality of 

information communicated to IRBs is not consistent with that contained in medical records [8]. It is 

conceivable that this will apply even to postmarketing reporting forms.  

The second possible explanation is the high need for novel therapeutic options to treat cancer. The 

clinical relevance of the disease confers a high value to the benefit of new treatments and rises the 
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threshold of acceptability of safety problems. As a consequence, several regulatory authorities 

(including FDA) have accelerated the procedures for anticancer drug approval (median time save 

compared with regular approval: 3.9 years; range 0.8-12.6 years) [9]  since the beginning of 90’ 

[10], and this circumstance may theoretically result in the early release of unsafe or ineffective 

drugs. Therefore, a higher number of unknown ADRs may be uncovered, in comparison with drugs 

belonging to other classes.  

Third, it is important to note that the population exposed to anticancer drugs during pre-marketing 

studies is quite different, as compared to that receiving the drug in the post-marketing phase. The 

benefit/risk balance changes from early-in-human trials to the population treated after the product is 

authorised. Indeed, patients included in first-in-human trials have often exhausted all standard 

treatments and have complicated medical histories (usually an average of at least 5 prior lines of 

treatments in phase 1). Early phases clinical trials represent the last hope for the majority of patients 

or even a way to benefit future generations. Unmet medical needs or the lack of other treatment 

options can sometimes be the main benefit for patients. After approval, new anticancer treatments 

enter a process of continue investigations that, in case of favorable outcomes, progressively turn 

them into first line therapies intended for patients who are relatively healthier and hold longer 

survival expectations, as compared to those of clinical trials. Therefore, long term safety, which is 

not regarded as an important issue in end-stage patients during early clinical trials, may become a 

matter of concern in daily-life clinical practice in “healthier” subjects.   

On this ground, it is important to consider reporting of adverse reactions to anticancer drugs as an 

important tool for generating signals of risk to be investigated in further studies. Nevertheless, the 

nature of these drugs and the peculiarities of oncologic patients require particular caution in the 

assessment of causality and identification of the risk during the post-marketing experience. This 

review is aimed at collecting the available studies performed on databases or datasets of 

spontaneously reported adverse reactions to oncologic drugs to assess what kind of information can 

be retrieved using these source of data. The methodologies of selected studies will be evaluated to 

highlight limitations and strengths with a particular focus on those that can be peculiar of the 

oncologic setting.  

 

Methods 

A literature search was performed using PubMed/MEDLINE and EMBASE up to December 2013 

without language restrictions. The key search terms for identifying investigations on spontaneous 

ADR reporting databases were: “spontaneous ADR reporting” or “pharmacovigilance” or “post-
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marketing surveillance” or “signal detection” or “disproportion analysis”. The following keywords, 

related to oncologic drugs, were selected: “oncologic drugs”, “anticancer drugs”, “cancer”, “target 

therapies”, “monoclonal antibodies”, “aromatase inhibitors”, “alkylating agents”, “taxanes”, 

“antimetabolites”, “tyrosine-kinase inhibitors”, “anti-estrogen drugs”, “antracyclines”, “platinum 

derivatives”, “vinca alkaloids”.  The studies included in the present article were those focused on 

any anticancer pharmacological treatment, and performed using, at least in part, data retrieved from 

spontaneous ADR reporting databases. Studies on anticancer agents used with indications other 

than cancer treatment or in which the indications were not clearly stated, were excluded from the 

analysis. Each title and abstract was reviewed in order to determine whether the paper was relevant 

to the review topic. For all potentially eligible references, the full-text was obtained and the studies 

were included if they met the pre-specified inclusion criteria. The reference lists of retrieved articles 

were also reviewed for identifying additional relevant studies. Black box warning have been 

included only when included in the reference list of selected articles. 

Based on methodological approaches, studies were classified as qualitative, quantitative or both. 

The qualitative approach was defined by case by case analysis of demographic and clinical data. 

The quantitative approach refers to the application of data mining algorithms to the drug-event pairs 

recorded in the database to identify disproportions [11]. Disproportionality analysis measures are 

built up to identify combinations of drug exposures and ADRs that occur disproportionately often, 

as compared to other drug-event combinations. Several different disproportionality measures have 

been proposed in the literature [12-14], which can generally be divided into two categories: 

frequentistic and Bayesian. The most popular frequentistic methods include the proportional 

reporting rate (PRR) [15] and the reporting odds ratio (ROR) [16]. Among the Bayesian 

approaches, the Bayesian Confidence Propagation Neural Network (BCPNN), which estimates the 

information component (IC) [16], the Multi-item Gamma-Poisson Shrinker (MGPS) [17, 18], and 

the Empirical Bayes Geometric Mean (EBGM) [16] are the most prominent and widely used 

techniques. For each study, we tried to assess the rationale underlying the most frequent 

applications of analysis of spontaneous reporting databases in the assessment of safety of oncologic 

drugs. 

 

Results 

Upon application of the inclusion criteria, we were able to identify 27 studies that have attempted 

safety assessments of oncologic drugs by analyzing spontaneous ADR databases (Table 1) [6, 19-

44]. The majority of these studies (n = 24) [6, 19-22, 24, 26-38, 41-44] were performed on the Food 

and Drug Administration (FDA) Adverse Events Reporting System (AERS). Nine studies 
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integrated spontaneous reporting data with literature data [6, 22-24, 27, 33-34, 44] and 2 studies 

included original data [33, 37]. Three studies used prescription data as denominator to estimate the 

incidence of reports [19, 20, 28]. Investigations were designed with several aims, most frequently to 

assess the relationship between a specific drug and a specific adverse event (n = 7) [22, 24, 26-28, 

35, 42], but also for assessing the association between a specific drug with a class of reactions (n=5) 

[19, 23, 36, 37, 40], as well as drug classes with a specific reaction (n=2) [6, 33], and drug classes 

with a class of reactions (n=4) [29, 34, 39, 43]. When the methodological approach was considered 

(Table 2), 12 studies [19, 20, 22-24, 27, 33, 36, 37, 39, 40, 42] were performed with a qualitative 

approach, 9 with a quantitative [21, 29-32, 38, 41, 43, 44], and 6 with an integrated approach (both 

quantitative and qualitative) [6, 25, 26, 28, 34, 35]. Fifteen studies [6, 21-23, 25, 27, 29-32, 34-37, 

40] investigated labeled ADRs, while 6 studies [19, 24, 26, 28, 33, 42] analyzed data from few 

cases identified by pre-marketing studies or spontaneous reporting. Five studies were conducted to 

identify unexpected ADRs [20, 38, 39, 43, 44]. The last study investigated all drugs (including 

anticancer drugs) with a significant disproportional reporting pathway for a specific ADR 

(pneumothorax) [41].  

Expert commentary & five-year view 

The main purpose of collecting spontaneous ADR reports is the early identification of clues of 

potential toxicities associated with drug treatments that are novel by virtue of their nature, severity 

or frequency [11]. Before powerful computer technology was available, this process, called “signal 

detection analysis” relied solely on case-by-case study, implying that each individual case report of 

a suspected ADR submitted to a spontaneous reporting system was reviewed by an experienced 

assessor, who evaluated the likelihood that a clinical picture was caused by the drug and checked 

for unusual clinical elements within the case. Despite this “qualitative” approach has proven its 

efficacy, the growing availability of data and the increase in the complexity of treatment-event 

associations (i.e. multifactorial evaluations, such as drug-drug interactions or syndromes) have 

required the development of “quantitative” approaches. The latter are based on the identification, 

within the database, of an unexpected higher frequency of a given suspected drug-adverse event 

association, as compared to a null or a control value (usually the frequency of the same adverse 

event estimated for all drugs within the database) [14, 16, 18]. Reporting frequency in excess of 

chance expectation is one of the several possible indicators of a previously unrecognized 

association with significance for patient safety. Nevertheless, the identification of a disproportion in 

a database of spontaneous reporting does not necessarily imply a real risk, but rather a trend of 

abnormal signaling that might be caused by several factors, other than the specific risk associated 
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with drug treatment. Therefore, a quantitative approach must be supported by a critical clinical 

review process for being considered as a “credible” signal, which can trigger formal studies (i.e. 

observational cohort or case-control studies) aimed at confirming and quantifying the actual risk 

[45]. Clearly, when analyzing potential signals of risk related to anticancer drugs, particular caution 

is needed both in the analysis and interpretation of the results. In theory, the most effective 

sequential approach to the analysis of spontaneous ADR reporting databases would be a 

“quantitative screening” with data mining algorithms, followed by a “qualitative” clinical 

assessment to substantiate any relevant “disproportion”, and this rule should also apply to the 

pharmacovigilance of anticancer drugs.  

Quantitative approach 

The possibility of identifying a signal of risk potentially associated with a cancer therapy through a 

quantitative approach has been demonstrated by several studies (6, 21, 25, 26, 28-32, 34, 35, 38, 41, 

43, 44]. In general, it has been shown that both the frequentistic and Bayesian approach display the 

same ability of detecting a signal of risk in the oncovigilance setting [21, 28-32, 35, 44], although 

there is little evidence that the Bayesian approach could allow an earlier detection of the problem, 

as compared with the frequentistic one [21]. However, some limitations in the application of these 

methods to oncologic drugs deserve to be highlighted.  

Cardiovascular toxicity of cancer drugs currently represents a relevant issue, especially for the most 

innovative targeted therapies, since many of these drugs seem to be all characterized by a certain 

cardiovascular risk [46]. Moreover, new drugs ensure increased survival rates as compared to 

traditional chemotherapies, to such an extent that long-term toxicity, like the cardiovascular one, 

has become a primary issue in cancer patients. In this regard, the oncologists and cardiologists have 

recently joined in a society (International CardiOncology Society) to collaborate in recognizing and 

treating cardiovascular toxicity of anticancer drugs [47]. Current evidence seems to suggest that 

data mining algorithms may not be suitable tools for the identification of certain ADRs, particularly 

for adverse events that are frequent in the general population and are not commonly thought to be 

drug-induced, such as cardiovascular ADRs [48]. This could be particularly true in the case of frail 

patients, such as cancer patients. Indeed, a cardiovascular event in a cancer patient will be more 

likely ascribed to co-morbidities or to age-related problems, and the probability of suspecting and 

reporting these events as drug-related is very low. For instance, in the study by Hauben et al.[21] 

data mining algorithms anticipated the detection of signals for almost all kinds of adverse reactions, 

with exception for cardiovascular events (namely thrombotic events associated with 

immunoglobulins).  
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The identification of cardiovascular ADRs in cancer patients is complicated not only by co-

morbidities but even by concomitant treatments. Xu and Wang [43] attempted to identify "filters" to 

limit the problem of confoundings related to concomitant therapies. They artificially selected 

anticancer monotherapies (drug-event pairs apparently not considering whether the drug was 

suspected or concomitant) in the FDA AERS database and excluded all polytherapies calculating 

disproportion for monotherapies only for cardiovascular events. The result was a large number of 

highlighted disproportion on signals (n=320) with an elevated percentage of unexpected drug-event 

pairs (80.6%). It is reasonable to assume that only a small number of reports included in this 

analysis was a true monotherapy: in our experience, when an ADR report identified a single cancer 

drug, in most cases information related to concurrent treatments were omitted. Therefore, the 

application of this filter completely overlooks the problem of data quality, that is typical of all 

spontaneous reporting databases (the study by Shamloo et al. [38] revealed that in the AERS 

database the frequency of lack of essential information such as “gender” is high). Based on the 

above mentioned limitations, we believe that at present the most effective way for monitoring the 

cardiovascular safety of anticancer drugs is the use of drug- or disease-based registries [49-51]. 

Another approach that seems to be promising, especially to exceed the limited effectiveness of 

spontaneous reporting systems in generating signals of potential association between drugs and 

events, that can be common in frail patients, is the data-mining of medical records originated by the 

combination of multiple healthcare databases available in US [52]. Unfortunately, current 

experience with these methods, particularly in the setting of oncologic drugs, is limited and definite 

conclusions on the efficiency of these approaches can not be drawn yet.  

Other kinds of ADRs, for which the identification of a disproportion could be difficult with data 

mining algorithms in cancer patients, could be neuropsychiatric events. For example, the study by 

Hauben et al. [21] demonstrated a certain limitation in the efficiency by which both the frequentistic 

and Bayesian approach allowed the early identification of neuropsychiatric events associated with 

interferons, as compared to ADRs belonging to different system organ classes. A couple of 

hypotheses can be made to explain these limitations: the first refers to the high prevalence (25-30%) 

of psychiatric conditions (mainly anxiety, stress-related diseases, and depression) in cancer patients 

[53]; caregivers likely consider these symptoms as disease-related, sometimes even as a part of a 

paraneoplastic syndrome (i.e. cerebral or meningeal metastasis), and therefore they rarely suspect 

and report a drug-related condition (high underreporting); the second is that psychiatric ADRs are 

commonly reported for other drugs [54]. Therefore, since the frequency of psychiatric ADR reports 

in the whole database is usually used as control, it is conceivable that the signal would be diluted 

and the evidence of disproportion might not emerge.  
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The problem of confounding by indication is without doubt one of the hardest to exceed. In several 

situations, it might identify disproportions within the database that are specifically related to the 

disease (e.g. paraneoplastic syndromes) rather than to treatment. In theory, we may agree with the 

use of a control as the expected frequency of an event not in the overall database, but in the whole 

class of anticancer drugs or, even better, in the group of drugs used for the same oncologic 

indication. However, this strategy would be rather difficult to pursue for several reasons, including 

for example the fact that very often a patient with a specific tumor is exposed both to the drug of 

interest and to the treatments used as controls. Therefore, the attempt of comparing ADR reports 

associated with a new oncologic drug A with reports on a traditional drug B (employed for the same 

indication, but not reporting drug A either as suspected or concomitant role) can lead to the 

selection of a cohort of control reports that is “historical” and does not contain information on the 

exposure to the new drug A merely because this drug was not available (or was not a first choice 

treatment) when the ADR related to control drug B was reported [55]. The use of a historical 

control cohort is associated with important biases, such as notoriety bias, or even biases stemming 

from different quality of care (e.g. different clinicians with different clinical approaches working in 

the same department in two different periods). An interesting idea to resolve the problem is to 

adjust the measure of disproportion using a parameter that takes into account the disproportion 

between the drug and the event [41]. This approach has proven to be effective in controlling the 

confoundings by indication for the majority of tests, and it is a promising tool for improving 

quantitative signal detection in the pharmacovigilance of anticancer drugs.  

The reporting timeframe deserves much caution, particularly when the comparison is made among 

drugs approved in different periods. For example, in the study by Sakaeda et al. [30] three platinum 

derivatives were compared using data recorded in AERS in the period 2004-2009. There was 

apparently no reason for selecting this period instead of a different one. This study identified a 

significantly higher frequency of reports for several ADRs by cisplatin than by oxaliplatin or 

carboplatin. However, the timeframe did not consider that the three drugs were on the market for 

different periods. Indeed, in the early phase of marketing the number of spontaneous ADR reports is 

maximum (Weber effect) [56]. For this reason, in the above mentioned analysis [30], several ADRs 

could have been less reported for the oldest platinum compound, as compared with the newest, 

simply because “well expected” by the oncologist and, as a such, not worthy of being reported. 

Moreover, the trend of use of anticancer drugs is varies considerably over time due to the high level 

of research and development activity in this field, as compared to that of other areas in medicine: 

with the introduction of a new drug, new treatment protocols gain diffusion, while old protocols 

decline (i.e. first choice drugs become second lines) and these circumstances may have great 
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influence on the trends of spontaneous ADR reporting. The differences observed in the above 

mentioned study [29] and in others [28, 30, 31] likely depend on the period selected for the analysis 

more than on actual differences in the safety profile. For this reason, we recommend caution when 

selecting the timeframe for the analysis.  

The last “quantitative” issue is specific for biothecnological drugs. In a recent study performed on 

the World Health Organization database it has been confirmed that the pattern of spontaneous 

reporting of ADRs for biotechnological drugs differs from that of traditional ones [57]. The reason 

for this is probably the fact that, at present, the majority of these drugs are used to treat a limited 

number of severe conditions, mainly cancers and autoimmune diseases. Therefore, we have a 

selection of ADRs that is of course typical of these drugs, but it is even influenced by the features of 

the diseases for which these drugs are employed. Regardless of whatever the reason, the problem is 

that several methods of disproportion analyses (both frequentistic and Bayesian) are based on the 

identification of a frequency of ADR reporting, that differs from one established a priori, which is 

usually that expected for all the drugs in the database. Our doubt is whether it is correct to include 

all drugs in this “denominator” since the two “superclasses” of drugs (biotechnological drugs and 

traditional ones) present different reporting profiles. Studies aimed at verify this hypothesis are 

currently warranted. 

Qualitative approach 

Qualitative approaches have been applied to the identification of safety concerns for anticancer 

drugs in several studies [19, 20, 22-24, 27, 33, 36, 37, 39, 42]. These studies usually consist of case 

series with a number of cases that is relatively small (depends on the frequency of the adverse event 

of interest), and provide general overviews that are very detailed from a clinical stand point. 

Although it would be methodologically appropriate that these studies originate from disproportion 

signals identified by data mining algorithms, in several analysis, performed on anticancer drugs, 

these evaluations were based on initial observations of individual cases or groups of cases 

highlighted in the literature or by the regulatory agencies. The main limitations seems to be the 

incapability of anticipating, with the exception of rare occasions, the identification of new and 

unexpected signals of risk. However, they have several advantages, especially if developed with a 

strict methodology. In this regard, when dealing with anticancer drugs, it is appropriate to cite the 

example of the Research on Adverse Drug Events and Report (RADAR) network that has 

developed a dedicated survey protocol [26]. 

The RADAR project consists of a network of experts from different areas, with a specific focus on 

the field of oncology, which makes the system particularly reliable for investigating the safety of 
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oncologic drugs. The most important rationale underlying the development of this network relies on 

the evidence that safety data are effectively disseminated not only in national databases of 

spontaneous reporting but also in literature, databases of pharmaceutical companies and records of 

the different clinical centers contributing to the RADAR network. This implies that, in some cases, 

data mining algorithms might not identify a signal because the disproportion is estimated only in 

spontaneous reporting databases, thus neglecting useful data retrievable from other sources. In this 

situation, a qualitative approach might be more effective, particularly in the field of oncology, 

where underreporting is a more relevant problem as compared with other fields of medicine. In 

addition, the quality of data contained in databases of spontaneous reporting may be insufficient to 

effectively track the clinical characteristics (time to onset, more frequent symptoms, etc.) of an 

ADR. The integrated approach, based mainly on literature data, allows high accuracy in details, and 

therefore it has been used in several studies selected in the present review [6, 22-24, 27, 33, 34, 44]. 

The study by Evens et al. [35] showed a huge difference in the quality of data from literature (i.e. 

completeness), with respect to that of databases of spontaneous ADR reporting. For these reasons, 

the integrated approach, based on literature data for investigations in the pharmacovigilance of 

anticancer drugs, can be strongly recommended. Notably, in 2010 the RADAR network “evolved” 

into the Southern Network on Adverse Reactions (SONAR) project, maintaining this integrated 

approach to drug safety assessment, widening the network and implementing the variety of 

publications produced [58].  

Overall, the quality of data recorded in databases of spontaneous ADR reporting largely depends on 

the forms used for reporting. The complexity of causality and clinical assessment of an ADR to 

anticancer drugs requires the collection of a large amount of variables that are essential not only for 

the evaluation of a single case, but even for the analysis of large databases on a population basis [7]. 

It is unlikely that all these information can be retrieved when ADRs are reported using standard 

forms (e.g. yellow card) provided by Regulatory Authorities. This point has been demonstrated, for 

instance, for ADRs reports on oncologic drugs to International Review Boards [8], but can likely be 

applied also to post-marketing ADR reporting forms. Standard ADR reporting forms have been 

developed to allow a simple interface and make easier the report by caregivers, thus saving as much 

as possible the few time they can spend for pharmacovigilance. Unfortunately, this strategy is not 

adequate in the oncologic setting. For this reason, some authors remark the higher value of 

published case reports, in which the narrative structure allows the inclusion of more details [59, 60]. 

In agreement with this consideration, in our opinion the collection of follow up information in a 

narrative structure can be recommended, especially when the adverse reaction reported for the 

oncologic drug is particularly relevant from a clinical point of view or is unexpected. Tools for free-
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text data extraction can optimize the activity of data codification, which would pertain not to the 

onocologist but to the expert of pharmacovigilance.  

Among the strengths of the RADAR (and SONAR) network, we consider as particularly remarkable 

that its protocol is based on two key elements. The first considers the clinical relevance of the event 

associated with the treatment and represents the start of a survey. The second takes into account the 

biological plausibility of the drug-event association of interest when assessing causality between 

drug exposure and event occurrence [61]. Several algorithms or criteria have been proposed to 

assess the degree of probability that an adverse event can be ascribed to a drug exposure. These 

tools have been created substantially on the basis of the criteria proposed by Irey [62] and Karch 

and Lasagna [63]: plausible temporal relationship between drug intake and the onset of symptoms; 

lack of alternative causes; positive response to drug dechallenge and drug rechallenge. When 

applied to oncologic drugs and to their peculiar adverse reactions these criteria must be verified 

with caution.  

When assessing causality, a temporal relationship between drug intake and the onset of an adverse 

event is “plausible” when this time is compatible with the supposed pharmacological and biological 

mechanism underlying the event. This means that as much as possible efforts must be done to 

unravel the mechanisms of adverse reactions that are still unknown or only hypothetic in nature. 

Case reports and case series can be helpful to identify a temporal window from the first drug intake 

to the diagnosis of the event that can be considered as plausible, when the pharmacological 

mechanism is uncertain. Since dechallenge and rechallenge information are usually difficult to be 

evaluated or the information these items provide are of limited utility to support the evidence of a 

causal association, the identification of a plausible pharmacologic mechanism is likely the key 

element of causality assessment for oncologic drugs, or at least more relevant than for the majority 

of other drug classes.  

The utility of dechallenge and rechallenge information for assessing causality depends on the nature 

of the adverse reaction. Many oncologic drugs are endowed with tumorigenic or other long-term 

effects for which dechallenge and rechallenge criteria can not be applied or do not provide any 

evidence of causality. On the other hand, since the administration of anticancer drugs is usually 

scheduled as cyclic administrations (usually once every three weeks), dechallenge and rechallenge 

information are often available for acute and often severe reactions (e.g. bone marrow depression, 

vomiting, diarrhea).  

Ruling out alternative causes likely remains the main issue for causality assessment of adverse 

reactions to oncologic drugs. Indeed, the oncologic patient usually undergoes multiple drug 

exposures either concomitantly or sequentially over time. Oncologic drugs are seldom used as 
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monotherapies with the aim of avoiding tumor resistance. Therefore, it is quite hard to discriminate 

among the different oncologic drugs (and theoretically also those drugs given as supportive care to 

manage adverse events, such as corticosteroids or antiemetics) included in a treatment regimen, 

especially for adverse reactions shared by different classes of anticancer drugs (i.e. bone marrow 

toxicity, neuropathies). When considering medium or long-term effects, such as some infections 

and tumours, the contribution of previous lines of treatment (chemotherapy, surgery, radiotherapy) 

can never be ruled out. Furthermore, patients usually present important co-morbidities (e.g. 

cardiovascular disturbances), that must be considered, if not as potential causes, at list as risk 

factors for the occurrence of an adverse event. Finally, when a severe adverse reaction occurs, the 

dose of one or more drugs scheduled in the treatment regimen is usually reduced in the next cycle or 

the next cycle is skipped, and therefore drug exposure may be not regular over-time. 

In conclusion, the evaluation of spontaneous ADRs for oncologic drugs by means of data mining 

algorithms is feasible and useful for the periodic screening of the safety profile of a treatment 

regimen, although the poor quality of data recorded in these databases may greatly affect the 

findings. Cardiovascular adverse reactions to oncologic drugs deserve particular attention and their 

monitoring currently seems more reliable with drug- or disease-based registries. The qualitative 

“validation” of disproportion signals identified with these algorithms is highly relevant and 

particularly challenging. A qualitative approach can be used not only as a validation strategy, but 

even as a signal detection, mainly when information are retrieved from different and heterogeneous 

sources. The FDA AERS was the main database used in currently available studies, and it would be 

interesting in the future to test the validity of these methods with other databases that are not 

currently open access (WHO, Eudravigilance), and to compare the results among different 

databases. Strategies aimed at improving the quality of data recorded in spontaneous ADR reporting 

databases for anticancer drugs should be developed and could include the development of ADR 

reporting forms dedicated to oncologic treatments. In the meantime, the use of literature data to 

integrate information obtained with spontaneous ADR reporting systems is recommended. 

 

Key issues 

• Oncology represents a field of medicine with a very active research and development of new 

drugs. The need for new medical tools against cancer has progressively reduced the time 

required by regulatory authorities for new drug approval. On the other hand, the newest 

drugs often improve the survival of cancer patients to such an extent that adverse effects 
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associated with long-term use must be considered more than in the past. As a consequence, 

the safety profile of anticancer drugs can be incomplete, when they receive marketing 

authorization and a close monitoring is required. 

• Standard signal detection tools can be applied with caution to identify unexpected safety 

issues associated with anticancer drugs, due to the complexity of multi-drug treatments and 

the presence of comorbidities.  

• Quantitative approaches, based on data mining algorithms, have proven to be valuable 

screening tools for the identification of potential new adverse reactions to oncologic drugs, 

but integrated qualitative approaches is recommended. Qualitative approaches can be 

regarded as the primary investigative strategies in some circumstances. 

• Cardiovascular safety is a primary issue for several new anticancer treatments. Traditional 

tools for signal detection are likely not suitable for assessing cardiovascular safety. Drug- or 

disease-based registries are more effective for monitoring the cardiovascular toxicity of 

anticancer drugs.     

• Causality assessment is complicated by patients frailty as well as by the complexity of 

treatments. Standard ADR reporting forms may be insufficient for collecting of relevant 

data, while published case reports represent more complete sources of information. 

Biological plausibility play a prominent role in the assessment of causality. 
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Table 1. Studies on spontaneous ADR reporting databases involving anticancer drugs 

Study Main data 

sources (period) 

Safety issue Number of cases Main results 

Wysowski et 

al.1996 [19]  

AERS (FDA) 

(1989 -1994) 

Prescription 

records 

Flutamide - 

hepatotoxicity 

46 Death (n=20)  

Median age 71 (range 47-85) 

Time to events onset: 5-270 days  

Hospitalized (n=26) 

Median age 69 (range 52-81) 

Time to events onset: 14-300 days  

Reporting rate (n=46): 2.5 per 100,000 prescriptions 

Bennett et al. 

2002 [20] 

AERS (FDA) 

(1998-2000) 

Prescription 

records 

NSA - interstitial 

pneumonitis 

12 (bicalutamide) 

16 (flutamide) 

Case definition: dyspnea, new pulmonary infiltrates, no evidence of infection 

Positive rechallenge: 6 patients 

Positive rechallenge with a different NSA: 2 patients 

Bicalutamide 

Demographic: median age 73.5 (59-91) 

Outcome: death (3) 

Incidence: 0.01%a 

Flutamide 

Demographic: median age 75 (65-84) 

Outcome: death (7) 

Incidence: 0.04%a 

Hauben et al. 

2004 [21] 

AERS (FDA) 

(up to 2003) 

Oncology drugs - 

potentially fatal 

reactions 

26 DEC PRR or MGPS generated a signal for 24 of 26 DECs for selected cancer drugs. 

For 16 DECs the signal was generated well in advance (≥2 years) than 

standard approaches. 

Bennett et al. 

2006 [22] 

 

AERS (FDA) 

(1998-2006) 

 

Lit (1998-2006) 

Thalidomide - VTE 

Lenalidomide - VTE 

1,118 (thalidomide) 

8 (lenalidomide) 

No demographic information from the AERS database provided in the article. 

254 (23%) thalidomide-associated VTE patients received anticoagulant 

therapy. 

6 (75%) lenalidomide-associated VTE patients received anticoagulant therapy. 

VTE rates from the analysis of phase II and phase III clinical trials on 

thalidomide (VTE cases: 585, 12%) and lenalidomide (VTE cases: 110, 8%). 

Belknap et 

al. 2006 [23] 

 

AERS (FDA) 

(1997-2003) 

Lit (1997-2004) 

Gemcitabine - lung 

injury 

178 

(55 CT, 92 SR, 31 Lit) 

 

 

Demographics: male 32% 

Seriousness: hospitalization (32%), death (37%) 

Cancer: lung (52%), pancreas (16%), breast (6%) 

Clinical features: dyspnea (70%), fever (35%), pulmonary infiltrate (22%), 

cough (19%) 

Median time to ADR identification: 48 days (range 1-529) 

Frequently co-administered drugs: paclitaxel (13%), docetaxel (13%) 

Estimated frequency: > 10% (317 patients with lung injury from 11 phase II-

III clinical trials) 
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Study  Main data 

sources (period) 

Safety issue Number of cases Main results 

McKoy et al. 

2007 [24] 

AERS (FDA) 

(2000-2004) 

Lit (2000-2005) 

FDA mandatory 

registry 

Gemtuzumab - SOS 104 Demographic: 99 adults, 6 pediatrics  

Outcomes: hospitalization (80%), death (60%) 

Signs and symptoms: hyperbilirubinemia, painful hepatomegaly, ascites, and 

sudden weight gain  

Time to symptom development: 10-13 days following gemtuzumab 

administration  

SOS incidence (clinical trials): 3% (low dose monotherapy or + non-

hepatotoxic agents); 28% (gemtuzumab + thioguanine); 15% (high dose 

monotherapy). SOS incidence (FDA registry): 14% (SCT); 9% (non-SCT) 

Gonzalez et 

al. 2008 [25] 

SPD (1999-

2006) 

rituximab - ADRs 

trastuzumab - ADRs 

69 (rituximab) 

23 (trastuzumab) 

Rituximab 

Demographics: male: 53.6%; mean age: 54.9±2.0 

Cancer: lymphoma 62.3%, unknown 27.5% 

Main ADRs: white cell disorders (n=18; ROR: 22.2; 95%CI: 12.9–38.2), 

other suspected drugs in 14 cases 

Mean time to ADR identification: 20.9±7.8 days 

Trastuzumab 

Demographics: female: 91.3; mean age: 55.5±2.6 

Cancer: breast: 60.8%, unknown: 13% 

Main ADRs: cardiac failure (n=7, ROR: NA), other suspected drugs in 5 

cases 

Mean time to ADR identification: 13.7±5.7 days 

McKoy et al. 

2008 [26] 

AERS (FDA) 

(NA) 

Bevacizumab - 

diverticulitis 

11 PRR: not significant 

Estimated rate in a clinical trial on bevacizumab + carboplatin and pemetrexed 

11% (n=4) 

Carson et al. 

2009 [27] 

AERS (FDA) 

(1997-2008) 

 

Lit (1997-2008) 

Rituximab - PML 52 (LD) 

5 (not LD) 

Demographics: male 43.8%; median age: 62 years (range 30-89) 

Survival: 10% 

Cancer: CLL (24.6%); FL (19.3%), NHL (17.5%) 

Clinical features: confusion, mental alterations (54.4%), focal motor 

weakness, hemiparesis (33.3%)  

Median time to ADR identification: 5.5 months 

Frequently co-administered drugs: corticosteroids (78.9%), CyPh (73.7); 

Vinca alkaloids (57.9%) 

 

Yang et al. 

2009 [28] 

AERS (FDA) 

(2005-2007) 

Prescription 

records 

Lenalidomide - VTE 41 Exposed patients (USA): 7764 patients (RevAssist data, company's 

proprietary restrictive distribution program)  

VTE reporting rate of 0.53% 

MGPS, PRR, ROR: not significant for lenalidomide-VTE but significant for 

lenalidomide+ESAs+VTE 
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Study  Main data 

sources (period) 

Safety issue Number of cases Main results 

Sakaeda et 

al. 2011A 

[29] 

AERS (FDA) 

(2004-2009) 

Platinum agent -

hypersensitivity 

reactions 

72 (cisplatin) 

313 (carboplatin) 

196 (oxaliplatin) 

No demographic or clinical details provided 

PRR, ROR, IC and EBGM: signal substantially confirmed for carboplatin and 

oxaliplatin but not for cisplatin. Bevacizumab co-administration affect the 

reporting of severe oxalipatin hypersensititvity reactions.   

Sakaeda et 

al., 2011B 

[30] 

AERS (FDA) 

(2004-2009) 

Platinum agent -

ADRs 

28,382 (cisplatin) 

24,835 (carboplatin) 

21,168 (oxaliplatin) 

No demographic or clinical details provided 

PRR, ROR, IC and EBGM: confirmed signals for all platinum compounds: 

nausea, vomiting, acute renal failure, neutropenia, thrombocytopenia, and 

peripheral sensory neuropathy. Signal of nausea and acute renal failure was 

stronger for cisplatin as compared with the other compounds. Signal of 

increase in blood level of creatinine not detected for carboplatin. 

Thrombocytopenia was reported more frequently for carboplatin. Reports of 

peripheral sensory neuropathy were significantly higher for oxaliplatin, and 

less common for cisplatin and carboplatin.  

Kadoyama et 

al. 2011 [31] 

AERS (FDA) 

(2004-2009) 

Anticancer drugs - 

hypersensitivity 

reactions 

319 (paclitaxel)  

114 (docetaxel)  

1 (procarbazine)  

8 (asparaginase) 

1 (teniposide)  

59 (etoposide) 

151 (doxorubicin) 

30 (6-MP) 

162 (5-FU) 

170 (CyPh) 

47 (cytarabine)  

No demographic or clinical details provided 

PRR, ROR, IC and EBGM: signal confirmed (at least 1 of the 4 methods 

identified the signal) for mild sensitivity reactions associated with paclitaxel 

and 5-FU, severe sensitivity reactions with paclitaxel and lethal sensitivity 

reactions with paclitaxel, docetaxel and 5-FU.  

Kadoyama et 

al. 2012 [32] 

AERS (FDA) 

(2004-2009) 

5-FU - ADRs 

Capecitabine - 

ADRs 

40,284 (5-FU) 

39,928 (capecitabine) 

No demographic or clinical details provided 

PRR, ROR, IC and EBGM: signals of leukopenia, neutropenia, 

thrombocytopenia are stronger for 5-FU than for capecitabine, while signals of 

nausea, vomiting and hand-foot syndrome were stronger for capecitabine than 

for 5-FU.  

 

 

Edwards et 

al. 2011 [33] 

AERS (FDA) 

(1998-2008) 

Original data 

Lit (1998-2008) 

Anticancer drugs - 

bone loss 

228 (fractures) Demographics: age distribution  > 30 years (coincided with the age of breast 

cancer therapy) 

Fracture sites: ≤ 64 years of age: 78 fractures, 15 cases (19%) of hip and 

femur fractures.  

Suspected drugs: aromatase inhibitors (n=149, 65%) 
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Study Main data 

sources (period) 

Safety issue Number of cases Main results 

Raisch et al. 

2011 [34] 

AERS (FDA) 

(up to 2009) 

Lit (up to 2009) 

Taxanes - 

anaphylactic 

reactions 

290 (docetaxel) 

683 (paclitaxel) 

Mortality: 54% (docetaxel) vs 29% (paclitaxel); p < 0.001  

Mortality with PPMs administration: 54% (docetaxel) vs 29% (paclitaxel); p < 

0.001   

EBGM: 1.74 (docetaxel); 2.50 (paclitaxel) 

Evens et al. 

2011 [35] 

AERS (FDA) 

(1999 -2009) 

Lit (1999 -2009) 

Rituximab - HBV 

reactivation 

183 (Lit) 

118 (AERS) 

Demographic: median age: 57.5 years (range 21-83): male 75; female 43  

Outcomes: death 58.4% 

PRR: 28.5 (95% CI 23.9-34.1); EBGM: 26.4 (95% CI 21.4-31.1) 

Overall completeness ratio of literature vs AERS: 2.37 (p<0.0001)  

Lee Villano 

et al. 2012 

[36] 

AERS (FDA) 

(1998 -2008) 

Temozolamide - 

major hematological 

ADRs 

112 Demographic: male 40% 

Cancer: CNS 76%, melanoma 3%, lymphoma 3%, brain metastasis 3% 

Major ADRs: AA (n=39); aplasia (n=37); leukemias (n=17); agranulocytosis 

(n=7); MDS (n=7); lymphoma (n=5) 

Age, outcomes, median duration of treatment, median onset symptoms were 

stratified by adverse event  

Sarganas et 

al. 2012 [37] 

AERS (FDA) 

(2007 -2010) 

Original data 

Temozolamide - 

liver ADRs 

154 No demographic, outcomes or exposure information 

Main ADRs: hepatic functional abnormalities (n=48); hepatotoxicity (n=21); 

hepatic enzyme increased (n=18) 

Shamloo et 

al. 2012 [38] 

AERS (FDA) 

(2004 - 2009) 

Bevacizumab - 

ADRs 

11,312  Demographic: females 46%, male 44.9% and unknown 9.1% 

Major represented age group 51-75 years (n=3984); reports with unknown age 

(51.1%) 

Outcomes: hospitalization 6,496; death 1,980 

Concomitant drug: oxaliplatin 63% 

Novel and clinically relevant PTs 63(PRR≥2)  

Edwards et 

al. 2013 [6] 

AERS (FDA) 

(1998-2009) 

Lit (1998 -2009) 

 

Bisphophonatesb -  

acute kidney failure 

480  Demographics: females 56%; mean age: 66±10 years 

Cancer: multiple myeloma (n = 220, 46%), breast cancer (n = 98, 20%), 

prostate cancer (n = 24, 5%)  

Drugs: zoledronic acid  (n = 411, 87.5%), pamidronate (n = 8, 17%), 

alendronate (n = 36, 2%). Outcomes: hospitalization (n = 304, 63.3%); death 

(n = 68, 14%).  

PRR (zoledronic acid): 1.22 (95%CI: 1.13-1.32)  

PRR (pamidronate): 1.55 (95%CI: 1.25-165) 

Faye et al. 

2013 [39] 

FPD (2008-

2010) 

Protein-kinase 

inhibitors - serious 

cutaneous reactions 

94 (115 ADRs) Demographics: male 63%; mean age: 62.6±15.4 years 

Cancer: liver (26 ADRs), lung (20), kidney (17), CML (12) 

Drugs: sorafenib (40%), erlotinib (25.2%), imatinib (13%), subitinib (13%) 

Seriousness: hospitalization (55%), death (2%) 

Clinical features: maculopapular rash (25.2%), hand-foot syndrome (15.7%), 

papulopustular rash (13.0%) (17% unlabelled) 
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Study Main data 

sources (period) 

Safety issue Number of cases Main results 

Grandvuille

min et al. 

2013 [40] 

FPD (1985-

2010) 

Cetuximab - infusion 

ADRs 

374 Infusion ADRs more reported in head and neck than colorectal cancer (p < 

0.001). Fatal infusion ADRs: 7 (5 occurred in head and neck cancer patients). 

Infusion ADRs were more likely to be severe during the first administration 

(OR = 7.40; 95%CI: 2.21-24.71) 

Hauben et al. 

2013  [41] 

AERS (FDA) 

(1969 - 2010) 

All drugs -

pneumothorax 

3681 For 26 oncology drugs most evident SDR-ADE 

Most evident SDR-ADE: carmustine (EBGM= 8.52), dacarbazine 

(EBGM=7.57); bleomicine (EBGM=6.52), gefinitinib (EBGM=6.5), 

docetaxel (EBGM=6.3) 

Confounding by indication may play a prominent role in reports of drug-

associated pneumothorax 

Letarte et al. 

2013 [42] 

AERS (FDA) 

(1997 - 2009) 

Bevacizumab - CNS 

hemorrhage 

154 Demographic: median age: 62 years; female 54% 

Cancer: colorectal (42%), primary glioma (13%), breast (10%) 

Death for CNS hemorrhage (33%) 

Concomitant myelosoppressive chemotherapy 54% 

Concomitant medications associated with bleeding 31%: heparin (n=16), 

NSAIDs (n=10), warfarin (n=9) 

Xu and 

Wang. 2013 

[43] 

AERS (FDA) 

(2004 - 2012) 

Target therapies -

cardiovascular  

events 

11,173 DEC DEC considered true positive pairs (signals): 320 (PRR) 

DEC not included in AERS FDA labels: 258 (80.6%) 

Rosen et al. 

2014 [44] 

AERS (FDA) 

(1968 - 2012) 

Lit (1968-2012) 

Anticancer drugs -

dermatologic 

adverse event  

2,098 SJS  

1,555 TEN  

SDR (PRR, EBGM) for SJS: bendamustine 

SDR (PRR, EBGM) for TEN: bendamustine, fludarabine, procarbazine, 

busulfan, clorambucile, lomostine 

5-FU: 5-fluorouracil, 6-MP: 6 mercaptopurine; AA: aplastic anaemia; ADR: adverse drug reaction; AERS: Adverse Events Reporting System; CLL: chronic lymphocytic leukemia; CML: chronic 

myeloid leukemia; CNS: central nervous system; CyPh: cyclophospamide; DEC: drug event combination; EBGM: empirical Bayes geometric mean; ESA: erythropoiesis-stimulating agents; FDA: 

Food and Drug Administration; FL: follicular lymphoma; FPD: French Pharmacovigilance Database; HBV: hepatitis B virus; IC: information component; Lit: medical literature; MDS: 

myelodysplastic syndrome; MGPS: multi-item gamma Poisson shrinker; NHL: non-Hodgkin lymphoma; NSA: non-sterodial anti-androgen; NSAIDs: non-steroidal antinflammatory drugs; ONJ: 

ostheonecrosis of the jaw; PPMs: prophylactic premedications; PML: progressive multifocal leukoencephalopathy; PRR: proportional reporting ratio; RADAR: research on adverse drug events and 

reports project,  ROR: reporting odds ratio; SCT: stem cell transplantation; SDR: signal of disproportionate reporting; SJS: Stevens-Jhonson syndrome; SOS: sinusoidal obstructive syndrome; SPD: 

Spanish Pharmacovigilance Database; SR: spontaneous reporting; TEN: toxic epidermal necrolisis; VTE: venous thromboembolism 

a: number of spontaneous reports over numbers of users provided by a drug-based registry; b: cancer indication 
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Table 2. Studies on spontaneous ADR reporting databases involving anticancer drugs: approach, evidence and rationale 

Study Approach Evidence/Rationale 

Wysowski et al.1996 [19] Qualitative Spontaneous reports and few cases in clinical trials 

Bennett et al. 2002 [20] Qualitative ADR reports associated with other drugs belonging to the same pharmacological class 

Hauben et al. 2004 [21] Quantitative Reactions labeled. Comparing the efficiency of several data mining algorithms 

Bennett et al. 2006 [22] Qualitative  Reactions labeled. General case review 

Belknap et al. 2006 [23] Qualitative Reactions labeled. General case review 

McKoy et al.  2007 [24] Qualitative Spontaneous reports and few cases in clinical trials /general case review 

Gonzalez et al. 2008 [25] Quantitative and qualitative Reactions labeled. General case review 

McKoy et al.  2008 [26] Quantitative and qualitative Spontaneous reports and few cases in clinical trials/general case review 

Carson et al. 2009 [27] Qualitative Reactions labeled. General case review 

Yang et al. 2009 [28] Quantitative and qualitative Spontaneous reports and few cases in clinical trials 

Sakaeda et al. 2011A [29] Quantitative Reactions labeled. Disproportional analysis 

Sakaeda et al. 2011B [30] Quantitative Reactions labeled. Comparison of ADR reporting profile among platinum-derivatives  

Kadoyama et al. 2011 [31] Quantitative Reactions labeled. Comparison of hypersensibility ADR reporting profile among 

anticancer drugs.  

Kadoyama et al. 2012 [32] Quantitative Reactions labeled. Comparison of ADR reporting profile between 5-FU and CAP 

Edwards et al. 2011 [33] Qualitative Spontaneous reports and few cases in clinical trials /general survey 

Raisch et al. 2011 [34] Quantitative and qualitative Reactions labeled. Disproportional analysis 

Evens et al. 2011 [35] Quantitative and qualitative Reactions labeled. Disproportional analysis and general case review 

Lee Villano et al. 2012 [36] Qualitative Reactions labeled. General case review 

Sarganas et al. 2012 [37] Qualitative Reactions labeled. General case review 

Shamloo et al. 2012 [38] Quantitative Disproportional analysis for the detection of unexpected ADRs 

Edwards et al. 2013 [6] Quantitative and qualitative Reactions labeled. Disproportional analysis and general case review 

Faye et al. 2013 [39] Qualitative Identification of unexpected ADRs for the class of protein kinase inhibitors 

Grandvuillemin et al. 2013 

[40] 

Qualitative Reactions labeled. General case review 

Hauben et al. 2013 [41] Quantitative Identification of drugs with a disproportional reporting pathway for pneumothorax 

Letarte et al. 2013 [42] Qualitative Few cases in clinical trials. General case review 

Xu and Wang. 2013 [43] Quantitative Identification of unexpected cardiovascular ADRs 

Rosen et al. 2014 [44] Quantitative Identification of unexpected serious dermatological ADRs 

5-FU: 5-fluorouracil; ADR: adverse drug reaction; CAP: capecitabine 

 


