14 research outputs found

    Hyperbaric oxygen therapy for painful bladder syndrome/interstitial cystitis resistant to conventional treatments: long-term results of a case series in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no confirmed strategy for treating painful bladder syndrome/interstitial cystitis (PBS/IC) with unclear etiology. Therefore, a pilot study was carried out to evaluate the efficacy and safety of hyperbaric oxygen (HBO) therapy in treatment-resistant PBS/IC patients.</p> <p>Methods</p> <p>HBO treatment (2.0 ATA for 60 minutes/day × 5 days/week for 2 or 4 weeks) was performed on 11 patients with severe symptoms that had not been improved by previous therapy regimens between December 2004 and July 2009.</p> <p>Results</p> <p>Seven of the 11 patients demonstrated persistent improvement in symptoms during the 12 months after HBO treatment. These responders demonstrated a decrease in the pelvic pain scale and urgency scale from 7.7 ± 1.0 and, 6.6 ± 0.9 to 3.4 ± 2.5 and 4.3 ± 2.4 after 12 months, respectively (p < 0.05). The total score of the interstitial cystitis symptom index and 24-hour urinary frequency demonstrated a significant sustained decrease from the baseline. Two responders, who received an additional course of HBO 12 and 13 months after initial treatment, respectively, did not suffer impairment for more than two years. There was one case of transient eustachian tube dysfunction and three cases of reversible exudative otitis media as a consequence of HBO treatment.</p> <p>Conclusions</p> <p>HBO is a potent treatment for PBS/IC patients resistant to conventional therapy. It was well tolerated and provided maintained amelioration of pain, urgency and urinary frequency for at least 12 months.</p

    Current research in radiotracer imaging of electroporation injury

    No full text
    High-voltage electrical shock can produce minimal external signs of damage with widespread damage to the skeletal muscle. The injury can be thermally mediated or the result of electroporation of cell membranes. Radiotracer imaging is one method for assessing the extent of damage in skeletal muscle. We are using radiotracer imaging in an in vivo animal model to investigate the effects of novel therapies, such as surfactants, for repairing electroporation damage. In this work, we report the results of region-of-interest (ROI) analysis and principal component analysis (PCA) of the data collected from the animal model. These analytical methods may provide a tool to assist in clinical monitoring of electrical injury victims

    The 1995 lindberg award: Nonthermally mediated muscle injury and necrosis in electrical trauma

    No full text
    Joule heating has long been considered the principal component of tissue damage in electrical injury. Recent studies suggest electroporation, a nonthermally mediated mechanism of cell membrane damage, is also a factor. We investigated whether electroporation-mediated muscle necrosis can occur in vivo without significant Joule heating. Pulsed electric fields approximately 150 V/cm were produced in the hind limbs of anesthetized rats. In shocked limbs core muscle temperature rose less than 1.8° C, yet significant damage occurred as determined by technetium-99m pyrophosphate uptake, elevated serum creatine phosphokinase, and prominent hypercontraction band degeneration of myofibers on histopathologic examination. This study is significant because it directly addresses whether nonthermal mechanisms of cell damage can cause tissue necrosis. These results indicate that electroporation effects can mediate skeketal muscle necrosis without visible thermal changes. Thus the phenomenon of “progressive recognition” may be characteristically largely explained by the occurrence of nonthermally mediated tissue damage. Copyright. © 1995 by Burn Science Publishers, Inc. All rights reserved
    corecore