17,788 research outputs found
Comment on "Chain Length Scaling of Protein Folding Time", PRL 77, 5433 (1996)
In a recent Letter, Gutin, Abkevich, and Shakhnovich (GAS) reported on a
series of dynamical Monte Carlo simulations on lattice models of proteins.
Based on these highly simplified models, they found that four different
potential energies lead to four different folding time scales tau_f, where
tau_f scales with chain length as N^lambda (see, also, Refs. [2-4]), with
lambda varying from 2.7 to 6.0. However, due to the lack of microscopic models
of protein folding dynamics, the interpretation and origin of the data have
remained somewhat speculative. It is the purpose of this Comment to point out
that the application of a simple "mesoscopic" model (cond-mat/9512019, PRL 77,
2324, 1996) of protein folding provides a full account of the data presented in
their paper. Moreover, we find a major qualitative disagreement with the
argumentative interpretation of GAS. Including, the origin of the dynamics, and
size of the critical folding nucleus.Comment: 1 page Revtex, 1 fig. upon request. Submitted to PR
Quantum measurements and Paul traps in gravitational backgrounds
In the present work we solve the motion equations of a particle in a Paul
trap embeded in the gravitational field of a spherically symmetric mass. One of
the ideas behind this work concerns the analysis of the effects that the
gravity--induced quantum noise, stemming from the bodies in the neighborhood of
the Paul trap, could have upon the enhancement of the quantum behavior of this
system. This will be done considering a series expansion for the gravitational
field of the source, and including in the Hamiltonian of the Paul trap only the
first two terms. Higher--order contributions will be introduced as part of the
environment of the system, and in consequence will not appear in the
Hamiltonian. In other words, we put forward an argument that allows us to
differentiate those gravitational degrees of freedom that will appear as an
uncontrollable influence on the Paul trap. Along the ideas of the so called
restricted path integral formalism, we take into account the continuous
monitoring of the position of our particle, and in consequence the
corresponding propagators and probabilities, associated with the different
measurements outputs, are obtained.
Afterwards, the differential equation related to a quantum nondemolition
variable is posed and solved, i.e., a family of quantum nondemolition
parameters is obtained. Finally, a qualitative analysis of the effects on the
system, of the gravity--induced environment, will be done.Comment: Accepted in International Journal of Modern Physics
Quantum nondemolition measurements of a particle in electric and gravitational fields
In this work we obtain a nondemolition variable for the case in which a
charged particle moves in the electric and gravitational fields of a spherical
body. Afterwards we consider the continuous monitoring of this nondemolition
parameter, and calculate along the ideas of the so called restricted path
integral formalism, the corresponding propagator. Using these results the
probabilities associated with the possible measurement outputs are evaluated.
The limit of our results, as the resolution of the measuring device goes to
zero, is analyzed, and the dependence of the corresponding propagator upon the
strength of the electric and gravitational fields are commented. The role that
mass plays in the corresponding results, and its possible connection with the
equivalence principle at quantum level, are studied.Comment: Accepted in International Journal of Modern Physics D, 14 page
Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate
Landau's description of the excitations in a macroscopic system in terms of
quasiparticles stands out as one of the highlights in quantum physics. It
provides an accurate description of otherwise prohibitively complex many-body
systems, and has led to the development of several key technologies. In this
paper, we investigate theoretically the Landau effective interaction between
quasiparticles, so-called Bose polarons, formed by impurity particles immersed
in a Bose-Einstein condensate (BEC). In the limit of weak interactions between
the impurities and the BEC, we derive rigorous results for the effective
interaction. They show that it can be strong even for weak impurity-boson
interaction, if the transferred momentum/energy between the quasiparticles is
resonant with a sound mode in the BEC. We then develop a diagrammatic scheme to
calculate the effective interaction for arbitrary coupling strengths, which
recovers the correct weak coupling results. Using this, we show that the Landau
effective interaction in general is significantly stronger than that between
quasiparticles in a Fermi gas, mainly because a BEC is more compressible than a
Fermi gas. The interaction is particularly large near the unitarity limit of
the impurity-boson scattering, or when the quasiparticle momentum is close to
the threshold for momentum relaxation in the BEC. Finally, we show how the
Landau effective interaction leads to a sizeable shift of the quasiparticle
energy with increasing impurity concentration, which should be detectable with
present day experimental techniques.Comment: 12 page
Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids
We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5–8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state
Recommended from our members
Synthesis of molybdenum oxide nanoparticles by nanosecond laser ablation
Phothermal therapy (PTT) is one of the most promising techniques to treat cancer. Finding the ideal PTT agent nanomaterial has remained a challenge and has brought the interest of several researchers. In this work, we report the synthesis of molybdenum oxide (MoOx) nanoparticles (NPs), which exhibit absorption in the biological optical window ~840 nm, by using the laser ablation of solids in liquids (LASL) technique with nanosecond (ns) pulses. A Nd:YAG laser was used to synthesize the NPs in deionized (DI) water, free of surfactants or additives, which were optically characterized by absorption spectroscopy and TEM-EDX microscopy. Semi spherical NPs with a suitable average size and shape for potential use as PTT agents were obtained by laser ablation and ablation + fragmentation. The calculated band gap is 3.1 eV, which corresponds to MoO3. Micro-Raman spectroscopy studies determined that these NPs are composed of amorphous molybdenum oxide hydrates (MoO3 · xH2O)
Influence of oxygen pressure on the fs laserinduced oxidation of molybdenum thin films
We present a study of femtosecond (1028 nm, 230 fs, 54.7 MHz) laser processing on molybdenum (Mo) thin films. Irradiations were done under ambient air as well as pure oxygen (O2) at various gauge pressures (4, 8, 12 and 16 psi). Our results indicate that the high heating rates associated with laser processing allow the production of different molybdenum oxides. Raman spectroscopy and scanning electron microscopy are used to characterize the molybdenum oxidation for the different irradiation and oxygen pressures parameters chosen showing a high correlation between well-defined oxidation zones and the oxygen pressure surrounding the samples during the irradiation of the Mo thin films
- …