1,386 research outputs found

    Accurate simulation estimates of phase behaviour in ternary mixtures with prescribed composition

    Get PDF
    This paper describes an isobaric semi-grand canonical ensemble Monte Carlo scheme for the accurate study of phase behaviour in ternary fluid mixtures under the experimentally relevant conditions of prescribed pressure, temperature and overall composition. It is shown how to tune the relative chemical potentials of the individual components to target some requisite overall composition and how, in regions of phase coexistence, to extract accurate estimates for the compositions and phase fractions of individual coexisting phases. The method is illustrated by tracking a path through the composition space of a model ternary Lennard-Jones mixture.Comment: 6 pages, 3 figure

    Identifying policy frames through semantic network analysis : an examination of nuclear energy policy across six countries

    Get PDF
    This study uses semantic network analysis to investigate nuclear energy policy frames in six countries: USA, UK, Germany, France, Japan, and South Korea. It is suggested that semantic network analysis represents a useful tool to investigate policy frames in complex policy environments. The discourse of top-level decision-makers is analyzed to highlight similarities and differences in policy frames and to identify the key policy arguments in the integrated network of all six countries. In total, 14 major policy arguments are identified, which relate to the three major frames of energy security, clean energy, and nuclear safety, along with the meta-issue of economic growth. There are differences in the degree of emphasis on each of the frames in the six countries, and Germany can be seen to have diverged the most following the Fukushima accident, as the emphasis is on clean energy, to the exclusion of the other frames. In contrast, both the USA and Japan have framed the issues primarily in terms of nuclear safety and energy security, while the UK and France have stressed the economic growth frame, and Korea has prioritized nuclear safety

    Coexistence Curve Singularities at Critical End Points

    Full text link
    We report an extensive Monte Carlo study of critical end point behaviour in a symmetrical binary fluid mixture. On the basis of general scaling arguments, singular behaviour is predicted in the diameter of the liquid-gas coexistence curve as the critical end point is approached. The simulation results show clear evidence for this singularity, as well as confirming a previously predicted singularity in the coexistence chemical potential. Both singularities should be detectable experimentally.Comment: 9 pages Revtex, 3 figures. To appear in Phys. Rev. Let

    Freezing line of the Lennard-Jones fluid: a Phase Switch Monte Carlo study

    Full text link
    We report a Phase Switch Monte Carlo (PSMC) method study of the freezing line of the Lennard-Jones (LJ) fluid. Our work generalizes to soft potentials the original application of the method to hard sphere freezing, and builds on a previous PSMC study of the LJ system by Errington (J. Chem. Phys. {\bf 120}, 3130 (2004)). The latter work is extended by tracing a large section of the Lennard-Jones freezing curve, the results for which we compare to a previous Gibbs-Duhem integration study. Additionally we provide new background regarding the statistical mechanical basis of the PSMC method and extensive implementation details.Comment: 18 pages, 6 figure

    Enthalpies of formation of lanthanide oxyapatite phases

    Get PDF
    A family of lanthanide silicates adopts an oxyapatite-like structure with structural formula Ln9.33∎0.67(SiO4)6O2 (Ln 4 La, Sm, Nd, Gd, ∎ = vacancy). The enthalpies of solution, DHS, for these materials and their corresponding binary oxides were determined by high-temperature oxide melt solution calorimetry using molten 2PbO·B2O3 at 1078 K. These data were used to complete thermodynamic cycles to calculate enthalpies of formation from the oxides, ΔHs f-oxides (kJ/mol): La9.33∎0.67(SiO4)6O2 = −776.3 ± 17.9, Nd9.33∎0.67(SiO4)6O2 = −760.4 ± 31.9, Sm9.33∎0.67(SiO4)6O2 = −590.3 ± 18.6, and Gd9.33∎0.67(SiO4)6O2 = −446.9 ± 21.9. Reference data were used to calculate the standard enthalpies of formation from the elements, ΔH0 f (kJ/mol): La9.33∎0.67(SiO4)6O2 = −14611.0 ± 19.4, Nd9.33∎0.67(SiO4)6O2 = −14661.5 ± 32.2, Sm9.33∎0.67(SiO4)6O2 = −14561.7 ± 20.8, and Gd9.33∎0.67(SiO4)6O2 = −14402.7 ± 28.2. The formation enthalpies become more endothermic as the ionic radius of the lanthanide ion decreases

    Wetting of a symmetrical binary fluid mixture on a wall

    Full text link
    We study the wetting behaviour of a symmetrical binary fluid below the demixing temperature at a non-selective attractive wall. Although it demixes in the bulk, a sufficiently thin liquid film remains mixed. On approaching liquid/vapour coexistence, however, the thickness of the liquid film increases and it may demix and then wet the substrate. We show that the wetting properties are determined by an interplay of the two length scales related to the density and the composition fluctuations. The problem is analysed within the framework of a generic two component Ginzburg-Landau functional (appropriate for systems with short-ranged interactions). This functional is minimized both numerically and analytically within a piecewise parabolic potential approximation. A number of novel surface transitions are found, including first order demixing and prewetting, continuous demixing, a tricritical point connecting the two regimes, or a critical end point beyond which the prewetting line separates a strongly and a weakly demixed film. Our results are supported by detailed Monte Carlo simulations of a symmetrical binary Lennard-Jones fluid at an attractive wall.Comment: submitted to Phys. Rev.

    Modelling colloids with Baxter's adhesive hard sphere model

    Full text link
    The structure of the Baxter adhesive hard sphere fluid is examined using computer simulation. The radial distribution function (which exhibits unusual discontinuities due to the particle adhesion) and static structure factor are calculated with high accuracy over a range of conditions and compared with the predictions of Percus--Yevick theory. We comment on rigidity in percolating clusters and discuss the role of the model in the context of experiments on colloidal systems with short-range attractive forces.Comment: 14 pages, 7 figures. (For proceedings of "Structural arrest in colloidal systems with short-range attractive forces", Messina, December 2003

    Interfacial tension of the isotropic--nematic interface in suspensions of soft spherocylinders

    Get PDF
    The isotropic to nematic transition in a system of soft spherocylinders is studied by means of grand canonical Monte Carlo simulations. The probability distribution of the particle density is used to determine the coexistence density of the isotropic and the nematic phases. The distributions are also used to compute the interfacial tension of the isotropic--nematic interface, including an analysis of finite size effects. Our results confirm that the Onsager limit is not recovered until for very large elongation, exceeding at least L/D=40, with L the spherocylinder length and D the diameter. For smaller elongation, we find that the interfacial tension increases with increasing L/D, in agreement with theoretical predictions.Comment: 8 pages, 7 figures, and also 1 tabl

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    Temperature-dependent structural heterogeneity in calcium silicate liquids

    Get PDF
    X-ray diffraction measurements performed on aerodynamically levitated CaSiO3 droplets have been interpreted using a structurally heterogeneous liquid-state model. When cooled, the high-temperature liquid shows evidence of the polymerization of edge shared Ca octahedra. Diffraction isosbestic points are used to characterize the polymerization process in the pair-distribution function. This behavior is linear in the high-temperature melt but exhibits rapid growth just above the glass transition temperature around 1.2Tg. The heterogeneous liquid interpretation is supported by molecular-dynamics simulations which show the CaSiO3 glass has more edge-shared polyhedra and fewer corner shared polyhedra than the liquid model
    • …
    corecore