12,847 research outputs found

    Analogue model for quantum gravity phenomenology

    Full text link
    So called "analogue models" use condensed matter systems (typically hydrodynamic) to set up an "effective metric" and to model curved-space quantum field theory in a physical system where all the microscopic degrees of freedom are well understood. Known analogue models typically lead to massless minimally coupled scalar fields. We present an extended "analogue space-time" programme by investigating a condensed-matter system - in and beyond the hydrodynamic limit - that is in principle capable of simulating the massive Klein-Gordon equation in curved spacetime. Since many elementary particles have mass, this is an essential step in building realistic analogue models, and an essential first step towards simulating quantum gravity phenomenology. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore our model suggests constraints on quantum gravity phenomenology in terms of the "naturalness problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9 Sep 200

    Tolman mass, generalized surface gravity, and entropy bounds

    Full text link
    In any static spacetime the quasi-local Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics and invoking the Unruh effect one can then develop elementary bounds on the quasi-local entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some notational changes for clarity; introductory paragraph rewritten; no physics changes. This version accepted for publication in Physical Review Letter

    Bounding the Hubble flow in terms of the w parameter

    Full text link
    The last decade has seen increasing efforts to circumscribe and bound the cosmological Hubble flow in terms of model-independent constraints on the cosmological fluid - such as, for instance, the classical energy conditions of general relativity. Quite a bit can certainly be said in this regard, but much more refined bounds can be obtained by placing more precise constraints (either theoretical or observational) on the cosmological fluid. In particular, the use of the w-parameter (w=p/rho) has become increasingly common as a surrogate for trying to say something about the cosmological equation of state. Herein we explore the extent to which a constraint on the w-parameter leads to useful and nontrivial constraints on the Hubble flow, in terms of constraints on density rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological distances d(z), and lookback time T(z). In contrast to other partial results in the literature, we carry out the computations for arbitrary values of the space curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page

    Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds

    Full text link
    We refine and extend a programme initiated by one of the current authors [Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the classical energy conditions of general relativity in a cosmological setting to place very general bounds on various cosmological parameters. We show how the energy conditions can be used to bound the Hubble parameter H(z), Omega parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as (relatively) simple functions of the redshift z, present-epoch Hubble parameter H_0, and present-epoch Omega parameter Omega_0. We compare these results with related observations in the literature, and confront the bounds with the recent supernova data.Comment: 21 pages, 2 figure

    Entropy bounds in terms of the w parameter

    Full text link
    In a pair of recent articles [PRL 105 (2010) 041302 - arXiv:1005.1132; JHEP 1103 (2011) 056 - arXiv:1012.2867] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, S <= A/2, was that the proportionality constant, 1/2, was weaker than that expected from black hole thermodynamics, 1/4. In the current article we strengthen the previous results by obtaining a bound involving the (suitably averaged) w parameter. Simple causality arguments restrict this averaged parameter to be <= 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.Comment: V1: 14 pages. V2: One reference added. V3: This version accepted for publication in JHE

    Cosmological milestones and energy conditions

    Full text link
    Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the "big bang", and possibly a "big crunch". However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with "big rips" and "sudden singularities" added to the mix, as well as renewed interest in non-singular cosmological events such as "bounces" and "turnarounds". In this talk, we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a "scale-factor singularity" is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. Since the classification is extremely general, and modulo certain technical assumptions complete, the corresponding results are to a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in Nafplio, Greec

    Effective refractive index tensor for weak field gravity

    Full text link
    Gravitational lensing in a weak but otherwise arbitrary gravitational field can be described in terms of a 3 x 3 tensor, the "effective refractive index". If the sources generating the gravitational field all have small internal fluxes, stresses, and pressures, then this tensor is automatically isotropic and the "effective refractive index" is simply a scalar that can be determined in terms of a classic result involving the Newtonian gravitational potential. In contrast if anisotropic stresses are ever important then the gravitational field acts similarly to an anisotropic crystal. We derive simple formulae for the refractive index tensor, and indicate some situations in which this will be important.Comment: V1: 8 pages, no figures, uses iopart.cls. V2: 13 pages, no figures. Significant additions and clarifications. This version to appear in Classical and Quantum Gravit

    Geometric structure of the generic static traversable wormhole throat

    Get PDF
    Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole throat in terms of a 2-dimensional constant-time hypersurface of minimal area. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at the wormhole throat and to derive generalized theorems regarding violations of the energy conditions-theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the spherically symmetric Morris-Thorne traversable wormhole. [For example: the null energy condition (NEC), when suitably weighted and integrated over the wormhole throat, must be violated.] The major technical limitation of the current approach is that we work in a static spacetime-this is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript figures

    Tolman wormholes violate the strong energy condition

    Get PDF
    For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a three-dimensional edgeless achronal spacelike hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at and near the bounce and to derive general theorems regarding violations of the energy conditions--theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the highly symmetric FRW-based subclass of Tolman wormholes. [For example: even under the mildest of hypotheses, the strong energy condition (SEC) must be violated.] Alternatively, one can dispense with the minimal volume condition and define a generic bounce entirely in terms of the motion of test particles (future-pointing timelike geodesics), by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC must be violated at or near the bounce. In contrast, it is easy to arrange for all the other standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200
    corecore