310 research outputs found

    Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    Get PDF
    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates

    Improvements in Mass Spectrometers for the Measurement of Small Differences in Isotope Abundance Ratios

    Get PDF
    A Nier-type mass spectrometer and its associated electronic units have been constructed for the purpose of measuring small variations in the abundances of oxygen of mass 18 and of carbon of mass 13 in carbon dioxide, and of oxygen of mass 18 in oxygen gas, to an accuracy of ±0.01 percent of the abundance of these isotopes.The electronic units of the necessary stability for this degree of accuracy are described. A gas feed system is described which permits fast alternate introduction of the sample of gas to be analyzed and a standard gas into the mass spectrometer. All measurements of the variation in the abundance of the oxygen and carbon isotopes are made with reference to a standard

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio

    The Muonium Atom as a Probe of Physics beyond the Standard Model

    Get PDF
    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium (M=μ+eM = \mu^+ e^-) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.Comment: 15 pages,6 figure

    First principles simulations of liquid Fe-S under Earth's core conditions

    Full text link
    First principles electronic structure calculations, based upon density functional theory within the generalized gradient approximation and ultra-soft Vanderbilt pseudopotentials, have been used to simulate a liquid alloy of iron and sulfur at Earth's core conditions. We have used a sulfur concentration of 12\approx 12 % wt, in line with the maximum recent estimates of the sulfur abundance in the Earth's outer core. The analysis of the structural, dynamical and electronic structure properties has been used to report on the effect of the sulfur impurities on the behavior of the liquid. Although pure sulfur is known to form chains in the liquid phase, we have not found any tendency towards polymerization in our liquid simulation. Rather, a net S-S repulsion is evident, and we propose an explanation for this effect in terms of the electronic structure. The inspection of the dynamical properties of the system suggests that the sulfur impurities have a negligible effect on the viscosity of Earth's liquid core.Comment: 24 pages (including 8 figures

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J., Scholz, D., & Fiebig, J. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11(1), (2020): 4005, doi:10.1038/s41467-020-17501-0.Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.This work became possible through DFG grant “INST 161/871-1” and the Investment in Science Fund at Woods Hole Oceanographic Institution. The authors would like to thank Sven Hofmann and Manuel Schumann for their assistance in the joint Goethe University – Senckenberg BiK-F Stable Isotope Facility at the Institute of Geosciences, Goethe University Frankfurt. K.M. acknowledges funding through “DFG ME 4955/1-1”, E.K. through “DFG MU 2845/6-1”, D.S. through “DFG SCHO 1274/8-1” and “DFG SCHO 1274/11-1”, and M.H. through “DFG HA 8694/1-1”. C.S. acknowledges funding from the University of Innsbruck. A review of the manuscript by David Evans on behalf of the USGS is acknowledged
    corecore