10,561 research outputs found

    Detection of a relic X-ray jet in Cygnus A

    Full text link
    We present a 200 ks Chandra ACIS-I image of Cygnus A, and discuss a long linear feature seen in its counterlobe. This feature has a non-thermal spectrum and lies on the line connecting the brighter hotspot on the approaching side and the nucleus. We therefore conclude that this feature is (or was) a jet. However, the outer part of this X-ray jet does not trace the current counterjet observed in radio. No X-ray counterpart is observed on the jet side. Using light-travel time effects we conclude that this X-ray 50 kpc linear feature is a relic jet that contains enough low-energy plasma (gamma ~ 10^3) to inverse-Compton scatter cosmic microwave background photons, producing emission in the X-rays.Comment: 4 pages. Proceedings of "High Energy Phenomena in Relativistic Outflows", held in Dublin, Ireland, September 24-28, 200

    A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    A thin rivulet or ridge subject to a uniform transverse\ud shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    The Renormalized Stress Tensor in Kerr Space-Time: Numerical Results for the Hartle-Hawking Vacuum

    Full text link
    We show that the pathology which afflicts the Hartle-Hawking vacuum on the Kerr black hole space-time can be regarded as due to rigid rotation of the state with the horizon in the sense that when the region outside the speed-of-light surface is removed by introducing a mirror, there is a state with the defining features of the Hartle-Hawking vacuum. In addition, we show that when the field is in this state, the expectation value of the energy-momentum stress tensor measured by an observer close to the horizon and rigidly rotating with it corresponds to that of a thermal distribution at the Hawking temperature rigidly rotating with the horizon.Comment: 17 pages, 7 figure

    Early out-of-equilibrium beam-plasma evolution

    Full text link
    We solve analytically the out-of-equilibrium initial stage that follows the injection of a radially finite electron beam into a plasma at rest and test it against particle-in-cell simulations. For initial large beam edge gradients and not too large beam radius, compared to the electron skin depth, the electron beam is shown to evolve into a ring structure. For low enough transverse temperatures, the filamentation instability eventually proceeds and saturates when transverse isotropy is reached. The analysis accounts for the variety of very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter

    The clinical trajectory of emerging bipolar disorder among the high-risk offspring of bipolar parents: current understanding and future considerations.

    Get PDF
    Relatively little is known about the onset of bipolar disorder, yet the early illness course is already associated with significant morbidity and mortality. Therefore, characterizing the bipolar illness trajectory is key to risk prediction and early intervention advancement. In this narrative review, we discuss key findings from prospective longitudinal studies of the high-risk offspring of bipolar parents and related meta-analyses that inform us about the clinical trajectory of emerging bipolar disorder. Challenges such as phenotypic and etiologic heterogeneity and the non-specificity of early symptoms and syndromes are highlighted. Implications of the findings for both research and clinical practice are discussed. Bipolar disorder in young people at familial risk does not typically onset with a hypomanic or manic episode. Rather the first activated episode is often preceded by years of impairing psychopathological states that vary over development and across emerging bipolar subtype. Taking heterogeneity into account and adopting a more comprehensive approach to diagnosis seems necessary to advance earlier identification and our understanding of the onset of bipolar disorder

    Nonlinear atom-optical delta-kicked harmonic oscillator using a Bose-Einstein condensate

    Full text link
    We experimentally investigate the atom-optical delta-kicked harmonic oscillator for the case of nonlinearity due to collisional interactions present in a Bose-Einstein condensate. A Bose condensate of rubidium atoms tightly confined in a static harmonic magnetic trap is exposed to a one-dimensional optical standing-wave potential that is pulsed on periodically. We focus on the quantum anti-resonance case for which the classical periodic behavior is simple and well understood. We show that after a small number of kicks the dynamics is dominated by dephasing of matter wave interference due to the finite width of the condensate's initial momentum distribution. In addition, we demonstrate that the nonlinear mean-field interaction in a typical harmonically confined Bose condensate is not sufficient to give rise to chaotic behavior.Comment: 4 pages, 3 figure

    A Maximum Entropy Method of Obtaining Thermodynamic Properties from Quantum Monte Carlo Simulations

    Full text link
    We describe a novel method to obtain thermodynamic properties of quantum systems using Baysian Inference -- Maximum Entropy techniques. The method is applicable to energy values sampled at a discrete set of temperatures from Quantum Monte Carlo Simulations. The internal energy and the specific heat of the system are easily obtained as are errorbars on these quantities. The entropy and the free energy are also obtainable. No assumptions as to the specific functional form of the energy are made. The use of a priori information, such as a sum rule on the entropy, is built into the method. As a non-trivial example of the method, we obtain the specific heat of the three-dimensional Periodic Anderson Model.Comment: 8 pages, 3 figure
    • 

    corecore