6,892 research outputs found
Handover Control for Human-Robot and Robot-Robot Collaboration
Modern scenarios in robotics involve human-robot collaboration or robot-robot cooperation in unstructured environments. In human-robot collaboration, the objective is to relieve humans from repetitive and wearing tasks. This is the case of a retail store, where the robot could help a clerk to refill a shelf or an elderly customer to pick an item from an uncomfortable location. In robot-robot cooperation, automated logistics scenarios, such as warehouses, distribution centers and supermarkets, often require repetitive and sequential pick and place tasks that can be executed more efficiently by exchanging objects between robots, provided that they are endowed with object handover ability. Use of a robot for passing objects is justified only if the handover operation is sufficiently intuitive for the involved humans, fluid and natural, with a speed comparable to that typical of a human-human object exchange. The approach proposed in this paper strongly relies on visual and haptic perception combined with suitable algorithms for controlling both robot motion, to allow the robot to adapt to human behavior, and grip force, to ensure a safe handover. The control strategy combines model-based reactive control methods with an event-driven state machine encoding a human-inspired behavior during a handover task, which involves both linear and torsional loads, without requiring explicit learning from human demonstration. Experiments in a supermarket-like environment with humans and robots communicating only through haptic cues demonstrate the relevance of force/tactile feedback in accomplishing handover operations in a collaborative task
Control of sliding velocity in robotic object pivoting based on tactile sensing
Control of robots manipulating objects using only the sense of touch is a challenge. In-hand motion of the manipulated object highly depends on the friction forces acting at the contact surfaces. Soft contacts allow torsional frictions as well as friction forces, therefore robots can perform more complex manipulation abilities, like object pivoting. Control of the pivoting sliding motion is very difficult especially without any visual feedback. The paper proposes a novel method to control the sliding velocity of the object by using a simple parallel gripper endowed with force/tactile sensors only. The strategy is based on a nonlinear observer that estimates the sliding velocity from force/torque measurements and a model of the sliding dynamics
Beyond the fundamental noise limit in coherent optical fiber links
It is well known that temperature variations and acoustic noise affect
ultrastable frequency dissemination along optical fiber. Active stabilization
techniques are in general adopted to compensate for the fiber-induced phase
noise. However, despite this compensation, the ultimate link performances
remain limited by the so called delay-unsuppressed fiber noise that is related
to the propagation delay of the light in the fiber. In this paper, we
demonstrate a data post-processing approach which enables us to overcome this
limit. We implement a subtraction algorithm between the optical signal
delivered at the remote link end and the round-trip signal. In this way, a 6 dB
improvement beyond the fundamental limit imposed by delay-unsuppressed noise is
obtained. This result enhances the resolution of possible comparisons between
remote optical clocks by a factor of 2. We confirm the theoretical prediction
with experimental data obtained on a 47 km metropolitan fiber link, and propose
how to extend this method for frequency dissemination purposes as well
Is the physical vacuum a preferred frame ?
It is generally assumed that the physical vacuum of particle physics should
be characterized by an energy momentum tensor in such a way to preserve exact
Lorentz invariance. On the other hand, if the ground state were characterized
by its energy-momentum vector, with zero spatial momentum and a non-zero
energy, the vacuum would represent a preferred frame. Since both theoretical
approaches have their own good motivations, we propose an experimental test to
decide between the two scenarios.Comment: 12 pages, no figure
High energy Coulomb-scattered electrons for relativistic particle beam diagnostics
A new system used for monitoring energetic Coulomb-scattered electrons as the
main diagnostic for accurately aligning the electron and ion beams in the new
Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail.
The theory of electron scattering from relativistic ions is developed and
applied to the design and implementation of the system used to achieve and
maintain the alignment. Commissioning with gold and 3He beams is then described
as well as the successful utilization of the new system during the 2015 RHIC
polarized proton run. Systematic errors of the new method are then estimated.
Finally, some possible future applications of Coulomb-scattered electrons for
beam diagnostics are briefly discussed.Comment: 16 pages, 23 figure
Comparative Studies on Different Citrus Cultivars: A Revaluation of Waste Mandarin Components
Peel, pulp and seed extracts of three mandarin varieties, namely Phlegraean mandarin (Citrus reticulata), Kumquat (Citrus japonica), and Clementine (Citrus clementina) were compared and characterised in terms of photosynthetic pigment content, total polyphenols amount, antioxidant activity and vitamin C to assess the amount of functional compounds for each cultivar. The highest polyphenols content was found in the Phlegraean mandarin, especially in peel and seeds, whereas Kumquat exhibited the highest polyphenols amount in the pulp. The antioxidant activity was higher in the peel of Phlegraean mandarin and clementine compared to Kumquat, which showed the highest value in the pulp. The antioxidant activity peaked in the seeds of Phlegraean mandarin. The vitamin C in the Phlegraean mandarin was the highest in all parts of the fruit, especially in the seeds. Total chlorophyll content was comparable in the peel of different cultivars, in the pulp the highest amount was found in clementine, whereas kumquat seeds showed the greatest values. As regards total carotenoids, peel and pulp of clementine exhibited higher values than the other two cultivars, whereas the kumquat seeds were the richest in carotenoids. Among the analysed cultivars Phlegraean mandarin may be considered the most promising as a source of polyphenols and antioxidants, compared to the clementine and Kumquat, especially for the functional molecules found in the seeds. Moreover, regardless of cultivars this study also highlights important properties in the parts of the fruit generally considered wastes
- …