159 research outputs found

    Bias Dependence of the Depletion Layer Width in Semi-Insulating GaAs by Charge Collection Scanning Microscopy

    Get PDF
    A procedure for the evaluation of the depletion region width of a Schottky barrier diode made on semi-insulating materials has been assessed and applied to gallium arsenide nuclear detectors. This procedure, which makes use of the optical beam induced current method of charge collection scanning microscopy, allows the direct measurement of the depletion layer width. By taking into account the high resistivity of the material under examination and measuring the diode reverse current, it is possible to evaluate the actual voltage applied at the depletion layer boundaries. It was found that, at low actual bias values, the voltage dependence of the depletion layer follows the usual square root power law, while at increasing voltages, it changes into a linear behavior. An explanation in terms of deep trap effect and trap field-enhanced capture cross-section is proposed even though further work must be done to explain the space charge width dependence on bias applied in terms of the deep trap influence

    Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem

    Get PDF
    The impact of nitrogen (N) fertilization and tillage on arbuscular mycorrhizal fungi (AMF) was studied in a Mediterranean arable system by combining molecular, biochemical and morphological analyses of field soil and of soil and roots from trap plants grown in microcosm. Canonical correspondence analysis (CCA) of PCR–DGGE banding patterns evidenced that AMF communities in the field are affected by N-fertilization and tillage. N-fertilization was also the main factor shaping AMF communities in Medicago sativa trap plant soil and roots. The overall sporulation pattern of the different AMF species showed a predominant effect of tillage on AMF communities, as shown by CCA analysis. Funneliformis mosseae was the predominant species sporulating in tilled soils, while Glomus viscosum and Glomus intraradices prevailed in no-tilled soils. Field glomalin-related soil protein content was reduced by tillage practices. Our multimodal approach, providing data on two main production factors affecting soil AMF communities, may help implementing effective agricultural management strategies able to support the beneficial relationship between crops and native AMF symbionts

    The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results.

    Get PDF
    Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers, where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological\u2013geomorphological setting is common and widespread for the Po Plain (Italy). The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy, because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5). In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantov

    Tests of silicon sensors for the CMS pixel detector

    Full text link
    The tracking system of the CMS experiment, currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland), will include a silicon pixel detector providing three spacial measurements in its final configuration for tracks produced in high energy pp collisions. In this paper we present the results of test beam measurements performed at CERN on irradiated silicon pixel sensors. Lorentz angle and charge collection efficiency were measured for two sensor designs and at various bias voltages.Comment: Talk presented at 6th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, September 29-October 1, 2003, Firenze, Italy. Proceedings will be published in Nuclear Instr. & Methods in Phys. Research, Section

    The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results.

    Get PDF
    Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers, where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological–geomorphological setting is common and widespread for the Po Plain (Italy). The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy, because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5). In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantov

    The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results

    Get PDF
    Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers [Ambraseys 1988, Carter and Seed 1988, Galli 2000, Tuttle 2001, Obermeier et al. 2005], where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological– geomorphological setting is common and widespread for the Po Plain (Italy) [Castiglioni et al. 1997]. The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy [Cavallin et al. 1977, Galli 2000], because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5) [Prestininzi and Romeo 2000, Galli 2000]. In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantova (Figure 1). These were the causes of considerable damage to buildings and the infrastructure. The soil liquefaction and ground cracks were accompanied by sand boils, which are described in this report. The spatial distribution and geomorphological setting of sand boils and ground cracks are also described here. A detailed three-dimensional (3D) reconstruction of these features is also presented, which was carried out using terrestrial photogrammetry. Since archeological times, fluvial ridges, and in general sandy deposits on low plains have been the preferred sites for human infrastructure, colonial houses, roads, etc. Therefore, it is very important to understand how the local topography/ morphology interacts in the liquefaction processes. Numerous distinctive seismic landforms were generated by the May 2012 strong earthquakes (seven with M >5), and in particular, sand boils and ground fractures. The sand-boil landforms, also known as sand craters or sand volcanoes, are formed by low mounds of sand that have been extruded from fractures [Tuttle 2001]. The cone is a generally shortlived structure that naturally collapses, starting from the center holes that mark the water retreat back into the fracture. Sand boils also occurred along larger cracks (with decimetric lateral and vertical displacements). Here, the upper scarps block the formation of craters and allow the deposition of a sandy layer several centimeters thick (e.g. ca. 4 cm in the San Carlo crack), on the lower side of the steep slope. These landforms are highly vulnerable to erosion. After a few weeks, they are washed out by rain, destroyed by human activity, or masked by growing crops. Thus, ground surveys that investigate these events have to be carried out as soon as possible [Panizza et al. 1981]. In this report, we present preliminary results using methods to map the detailed micro-morphology of some representative liquefaction features (Figure 2) that normally disappear for the aforementioned reasons, or that are recorded only in qualitative terms

    VLBI Observations of a Complete Sample of Radio Galaxies. VI. The Two FR-I Radio Galaxies B2 0836+29 and 3C465

    Get PDF
    We present 5 GHz global VLBI observations of the two Fanaroff Riley Type I radio galaxies B2 0836+29 and 3C465 (2335+26). For 3C465 we present also 1.7 GHz and 8.4 GHz global VLBI data. In addition VLA observations were used to obtain arsecond resolution continuum and polarization maps at 5 GHz. Both sources are very asymmetric on the parsec-scale, with a core and a one-sided jet, aligned with the main arcsecond scale jet. We place a limit on the milliarcsecond jet to counterjet brightness ratio Bjet_{jet}/Bcjet_{cjet} \gtsim 20 and \gtsim 30 for B2 0836+29 and 3C465 respectively. For 3C465 the strong asymmetry holds to the kiloparsec scale. The brightness asymmetry and the ratio between the core radio power and total radio power allow us to constrain the jet velocity close to the core and the orientation of the radio structure with respect to the line of sight. The results suggest that the plasma speed is relativistic on the parsec scale for both sources, i.e. vjet_{jet} \gtsim 0.75c for B2 0836+29 and vjet_{jet} \gtsim 0.6c for 3C465. While vjet_{jet} decreases from the parsec to the kiloparsec scale in B2 0836+29, in 3C465 the very high vjet_{jet} holds all the way to the kiloparsec-scale {\t bright spot}. Our results are in agreement with the unification scheme suggestion that FR-I radio galaxies are the unbeamed poulation of BL-Lac objects. Furthermore, they reinforce the idea that the central engine in FR-I and FR-II radio galaxies must be qualitatively similar. The different radio morphology could then be due either to an intrinsically different nuclear power, which affects the torus geometry or to different conditions in the region beyond the parsec scale, where a significant deceleration in the FR-I jets occurs.Comment: 28 pages, 4 tables, 8 figures all available under request from [email protected]

    3D Engineering Geological Modeling to Investigate a Liquefaction Site: An Example in Alluvial Holocene Sediments in the Po Plain, Italy

    Get PDF
    Liquefaction-induced surface manifestations are the result of a complex geological–geotechnical phenomenon, driven by several controlling factors. We propose a multidisciplinary methodological approach, involving engineering geologists, geomorphologists, sedimentologists, and geotechnical engineers, to build a 3D engineering geological model for liquefaction assessment studies. The study area is Cavezzo (Po Plain, Italy), which is a municipality hit by superficial liquefaction manifestations during the Emilia seismic crisis of May–June 2012. The site is characterized by a Holocene alluvial sequence of the floodplain, fluvial channel, and crevasse splay deposits prone to liquefaction. The integration of different geotechnical investigations, such as boreholes, CPTm, CPTu, and laboratory tests, allowed us to recognize potentially liquefiable lithological units, crucial for hazard assessment studies. The resulting 3D engineering geological model reveals a strict correlation of co-seismic surface manifestations with buried silty sands and sandy silts within the shallow 10 m in fluvial channel setting, which is capped and laterally confined by clayey and silty deposits
    • …
    corecore