164 research outputs found
Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium
We report on a first measurement of tensor analyzing powers in quasi-elastic
electron-deuteron scattering at an average three-momentum transfer of 1.7
fm. Data sensitive to the spin-dependent nucleon density in the deuteron
were obtained for missing momenta up to 150 MeV/ with a tensor polarized
H target internal to an electron storage ring. The data are well described
by a calculation that includes the effects of final-state interaction,
meson-exchange and isobar currents, and leading-order relativistic
contributions.Comment: 4 pages, 3 figure
Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer
Tensor polarization observables (t20, t21 and t22) have been measured in
elastic electron-deuteron scattering for six values of momentum transfer
between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson
Laboratory in Hall C using the electron HMS Spectrometer, a specially designed
deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new
data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q.
They are in good agreement with relativistic calculations and disagree with
pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see
http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several
topics, one figure has been had, extraction of form factors use AQ
interpolation in our Q2 range onl
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium
We report on a measurement of spin-momentum correlations in quasi-elastic
scattering of longitudinally polarized electrons with an energy of 720 MeV from
vector-polarized deuterium. The spin correlation parameter was
measured for the reaction for missing
momenta up to 350 MeV/ at a four-momentum transfer squared of 0.21
(GeV/c). The data give detailed information about the spin structure of the
deuteron, and are in good agreement with the predictions of microscopic
calculations based on realistic nucleon-nucleon potentials and including
various spin-dependent reaction mechanism effects. The experiment demonstrates
in a most direct manner the effects of the D-state in the deuteron ground-state
wave function and shows the importance of isobar configurations for this
reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio
- âŠ