120 research outputs found

    Vanishing Loss Effect on the Effective ac Conductivity behavior for 2D Composite Metal-Dielectric Films At The Percolation Threshold

    Full text link
    We study the imaginary part of the effective acac conductivity as well as its distribution probability for vanishing losses in 2D composites. This investigation showed that the effective medium theory provides only informations about the average conductivity, while its fluctuations which correspond to the field energy in this limit are neglected by this theory.Comment: 6 pages, 2 figures, submitted to Phys.Rev.

    Restoration of A P657-647 form from P645-638 in extracts of etiolated primary bean leaves

    Full text link
    Measurements of absorption, fluorescence and fluorescence excitation spectra at liquid nitrogen temperature show that it is possible to restore in vitro a P657-647 protochlorophyllide lipoprotein complex (PLC) starting from preparations which essentially contain the P645-638 complex. The restoration is obtained by drying according to an experimental procedure which is described. Evidence for the attribution to the restored P657-647 of a Soret absorption band at 460 nm is given. © 1975

    Localization and Absorption of Light in 2D Composite Metal-Dielectric Films at the Percolation Threshold

    Full text link
    We study in this paper the localization of light and the dielectric properties of thin metal-dielectric composites at the percolation threshold and around a resonant frequency where the conductivities of the two components are of the same order. In particular, the effect of the loss in metallic components are examined. To this end, such systems are modelized as random LCL-C networks, and the local field distribution as well as the effective conductivity are determined by using two different methods for comparison: an exact resolution of Kirchoff equations, and a real space renormalization group method. The latter method is found to give the general behavior of the effective conductivity but fails to determine the local field distribution. It is also found that the localization still persists for vanishing losses. This result seems to be in agreement with the anomalous absorption observed experimentally for such systems.Comment: 14 page latex, 3 ps figures. submitte

    On random symmetric matrices with a constraint: the spectral density of random impedance networks

    Full text link
    We derive the mean eigenvalue density for symmetric Gaussian random N x N matrices in the limit of large N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be equivalent to a result found recently for the average density of resonances in random impedance networks [Y.V. Fyodorov, J. Phys. A: Math. Gen. 32, 7429 (1999)]. In the case of banded matrices, the analytical results are compared with those extracted from the numerical solution of Kirchhoff equations for quasi one-dimensional random impedance networks.Comment: 4 pages, 5 figure

    Fluctuations in random RLCRL-C networks: non-linear σ\sigma- model description

    Full text link
    Disordered RLCRL-C networks are known to be an adequate model for describing fluctuations of electric fields in a random metal-dielectric composite. We show that under appropriate conditions the statistical properties of such a system can be studied in the framework of the Efetov's non-linear σ\sigma- model. This fact provides a direct link to the theory of Anderson localization.Comment: 4 pages, latex, no figure

    Theory of the temperature and doping dependence of the Hall effect in a model with x-ray edge singularities in d=oo

    Full text link
    We explain the anomalous features in the Hall data observed experimentally in the normal state of the high-Tc superconductors. We show that a consistent treatment of the local spin fluctuations in a model with x-ray edge singularities in d=oo reproduces the temperature and the doping dependence of the Hall constant as well as the Hall angle in the normal state. The model has also been invoked to justify the marginal-Fermi-liquid behavior, and provides a consistent explanation of the Hall anomalies for a non-Fermi liquid in d=oo.Comment: 5 pages, 4 figures, To appear in Phys. Rev. B, title correcte

    Intermediate Valence Model for the Colossal Magnetoresistance in Tl_{2}Mn_{2}O_{7}

    Full text link
    The colossal magnetoresistance exhibited by Tl_{2}Mn_{2}O_{7} is an interesting phenomenon, as it is very similar to that found in perovskite manganese oxides although the compound differs both in its crystalline structure and electronic properties from the manganites. At the same time, other pyrochlore compounds, though sharing the same structure with Tl_{2}Mn_{2}O_{7}, do not exhibit the strong coupling between magnetism and transport properties found in this material. Mostly due to the absence of evidence for significant doping into the Mn-O sublattice, and the tendency of Tl to form conduction bands, the traditional double exchange mechanism mentioned in connection with manganites does not seem suitable to explain the experimental results in this case. We propose a model for Tl_{2}Mn_{2}O_{7} consisting of a lattice of intermediate valence ions fluctuating between two magnetic configurations, representing Mn-3d orbitals, hybridized with a conduction band, which we associate with Tl. This model had been proposed originally for the analysis of intermediate valence Tm compounds. With a simplified treatment of the model we obtain the electronic structure and transport properties of Tl_{2}Mn_{2}O_{7}, with good qualitative agreement to experiments. The presence of a hybridization gap in the density of states seems important to understand the reported Hall data.Comment: 8 pages + 5 postscript fig

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure

    Electronic Transport in Metallic Systems and Generalized Kinetic Equations

    Full text link
    This paper reviews some selected approaches to the description of transport properties, mainly electroconductivity, in crystalline and disordered metallic systems. A detailed qualitative theoretical formulation of the electron transport processes in metallic systems within a model approach is given. Generalized kinetic equations which were derived by the method of the nonequilibrium statistical operator are used. Tight-binding picture and modified tight-binding approximation (MTBA) were used for describing the electron subsystem and the electron-lattice interaction correspondingly. The low- and high-temperature behavior of the resistivity was discussed in detail. The main objects of discussion are nonmagnetic (or paramagnetic) transition metals and their disordered alloys. The choice of topics and the emphasis on concepts and model approach makes it a good method for a better understanding of the electrical conductivity of the transition metals and their disordered binary substitutional alloys, but the formalism developed can be applied (with suitable modification), in principle, to other systems. The approach we used and the results obtained complements the existent theories of the electrical conductivity in metallic systems. The present study extends the standard theoretical format and calculation procedures in the theories of electron transport in solids.Comment: 100 pages, 3 figures, Refs.37
    corecore