37 research outputs found

    Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space

    Get PDF
    Neuronal stimulation causes ∼30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na+/K+/Cl− (NKCC1) and the Na+/HCO3− (NBC) cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia–neuron interaction models for normal as well as pathophysiological situations

    Performance Optimization of Fractal Dimension Based Feature Selection Algorithm

    No full text

    Membrane Analysis of Composite Reinforced Composite Spherical Shells

    No full text

    Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Get PDF
    One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co- expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins

    The Hill Model for Binding Myosin S1 to Regulated Actin Is not Equivalent to the McKillop–Geeves Model

    No full text
    The Hill two-state cooperativity model and the McKillop–Geeves (McK–G) three-state model predict very similar binding traces of myosin subfragment 1 (S1) binding to regulated actin filaments in the presence and absence of calcium, and both fit the experimental data reasonably well [Chen et al., Biophys. J., 80, 2338–2349]. Here, we compared the Hill model and the McK–G model for binding myosin S1 to regulated actin against three sets of experimental data: the titration of regulated actin with S1 and the kinetics of S1 binding of regulated actin with either excess S1 to actin or excess actin to S1. Each data set was collected for a wide range of specified calcium concentrations. Both models were able to generate reasonable fits to the time course data and to titration data. The McK–G model can fit all three data sets with the same calcium-concentration-sensitive parameters. Only KB and KT show significant calcium dependence, and the parameters have a classic pCa curve. A unique set of the Hill model parameters was extremely difficult to estimate from the best fits of multiple sets of data. In summary, the McK–G cooperativity model more uniquely resolves parameters estimated from kinetic and titration data than the Hill model, predicts a sigmoidal dependence of key parameters with calcium concentration, and is simpler and more suitable for practical use

    Structure, Spectroscopy, and Bonding within the Znq+−Imidazolen (q2= 0, 1, 2; n = 1−4) Clusters and Implications for Zeolitic Imidazolate3 Frameworks and Zn−Enzymes

    No full text
    International audienceUsing density functional theory (DFT) with dispersion correction and ab initio post Hartree-Fockmethods, we treat the bonding, the structure, the stability and the spectroscopy of the complexes betweenZnq+ and imidazole (Im), Znq+Imn (where q = 0, 1, and 2; n = 1-4). These entities are subunits of zeoliticimidazolate frameworks (ZIFs) and Zn-enzymes, which possess relevant roles in industrial and biologicaldomains, respectively. We also investigate the Imn (n = 2-4) clusters for comparison. For each species, wedetermine several new structures that were not found previously. Our calculations show a competitionbetween atomic metal solvation, either by s-type interactions or p-stacking type interaction, andhydrogen bonding (H-bonding). This results in several geometrical environments around the metal. Theseare connected with structural properties and the functional role of Zn cation within ZIFs and Zn-enzymes.Moreover, we show that the Zn2+Imn subunits do not absorb in the Vis domain, which may be related tothe photostability of ZIFs. Our findings are important for the development of new applications of ZIFsand metalloenzymes

    The effects of Ag, Mg, and Pr doping on the superconductivity and structure of BSCCO

    Get PDF
    AbstractThe influence of Ag, Mg, and Pr additions and co-additions on microstructure and phase formation of Bi2Sr2CaCu2O8+d (Bi2212) system is investigated. Polycrystalline Bi2212 samples were synthesized in air by solid state reaction method. Phase analysis, micro structural observations and magnetic properties were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and A.C. susceptibility measurements respectively. XRD results reveal two main phases (Bi-2201 and Bi2212). SEM photographs show that the substitution by Ag, Mg or Pr affects the mechanism of the grains growth. The undoped sample has a critical temperature Tc of 65 K while in the Mg and Ag containing compounds the Tc is 77 K and 75 K respectively. The Pr containing compound exhibits no superconductivity. A valence of the Pr ion higher than 3+ in the lattice supports the holefilling mechanism of the suppression of superconductivity

    Resolution and uniqueness of estimated parameters of a model of thin filament regulation in solution

    No full text
    The estimation of chemical kinetic rate constants for any non-trivial model is complex due to the nonlinear effects of second order chemical reactions. We developed an algorithm to accomplish this goal based on the Damped Least Squares (DLS) inversion method and then tested the effectiveness of this method on the McKillop–Geeves (MG) model of thin filament regulation. The kinetics of MG model is defined by a set of nonlinear ordinary differential equations (ODEs) that predict the evolution of troponin–tropomyosin–actin and actin–myosin states. The values of the rate constants are estimated by integrating these ODEs numerically and fitting them to a series of stopped-flow pyrene fluorescence transients of myosin-S1 fragment binding to regulated actin in solution. The accuracy and robustness of the estimated rate constants are evaluated for DLS and two other methods, namely quasi-Newton (QN) and simulated annealing (SA). The comparison of these methods revealed that SA provides the best estimates of the model parameters because of its global optimization scheme. However it converges slowly and does quantify the uniqueness of the estimated parameters. On the other hand the QN method converges rapidly but only if the initial guess of the parameters is close to the optimum values, otherwise it diverges. Overall, the DLS method proves to be the most convenient method. It converges fast and was able to provide excellent estimates of kinetic parameters. Furthermore, DLS provides the model resolution matrix, which quantifies the interdependence of model parameters thereby evaluating the uniqueness of their estimated values. This property is essential for estimating of the dependence of the model parameters on experimental conditions (e.g. Ca2+ concentration) when it is assessed from noisy experimental data such as pyrene fluorescence from stopped-flow transients. The advantages of the DLS method observed in this study should be further examined in other physicochemical systems to firmly establish the observed effectiveness of DSL vs. the other parameter estimation methods
    corecore