1,338 research outputs found
Particles at oil–air surfaces : powdered oil, liquid oil marbles, and oil foam
The type of material stabilized by four kinds of fluorinated particles (sericite and bentonite platelet clays and spherical zinc oxide) in air–oil mixtures has been investigated. It depends on the particle wettability and the degree of shear. Upon vigorous agitation, oil dispersions are formed in all the oils containing relatively large bentonite particles and in oils of relatively low surface tension (γla < 26 mN m⁻¹) like dodecane, 20 cS silicone, and cyclomethicone containing the other fluorinated particles. Particle-stabilized oil foams were obtained in oils having γla > 26 mN m⁻¹ where the advancing air–oil–solid contact angle θ lies between ca. 90° and 120°. Gentle shaking, however, gives oil-in-air liquid marbles with all the oil–particle systems except for cases where θ is <60°. For oils of tension >24 mN m⁻¹ with omniphobic zinc oxide and sericite particles for which advancing θ ≥ 90°, dry oil powders consisting of oil drops in air which do not leak oil could be made upon gentle agitation up to a critical oil:particle ratio (COPR). Above the COPR, catastrophic phase inversion of the dry oil powders to air-in-oil foams was observed. When sheared on a substrate, the dry oil powders containing at least 60 wt % of oil release the encapsulated oil, making these materials attractive formulations in the cosmetic and food industries
Resonances and superlattice pattern stabilization in two-frequency forced Faraday waves
We investigate the role weakly damped modes play in the selection of Faraday
wave patterns forced with rationally-related frequency components m*omega and
n*omega. We use symmetry considerations to argue for the special importance of
the weakly damped modes oscillating with twice the frequency of the critical
mode, and those oscillating primarily with the "difference frequency"
|n-m|*omega and the "sum frequency" (n+m)*omega. We then perform a weakly
nonlinear analysis using equations of Zhang and Vinals (1997, J. Fluid Mech.
336) which apply to small-amplitude waves on weakly inviscid, semi-infinite
fluid layers. For weak damping and forcing and one-dimensional waves, we
perform a perturbation expansion through fourth order which yields analytical
expressions for onset parameters and the cubic bifurcation coefficient that
determines wave amplitude as a function of forcing near onset. For stronger
damping and forcing we numerically compute these same parameters, as well as
the cubic cross-coupling coefficient for competing waves travelling at an angle
theta relative to each other. The resonance effects predicted by symmetry are
borne out in the perturbation results for one spatial dimension, and are
supported by the numerical results in two dimensions. The difference frequency
resonance plays a key role in stabilizing superlattice patterns of the SL-I
type observed by Kudrolli, Pier and Gollub (1998, Physica D 123).Comment: 41 pages, 13 figures; corrected figure 1b and minor typos in tex
Evaporation of particle-stabilised emulsion sunscreen films
We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here
Spectrophotometry of thin films of light absorbing particles
Thin films of dispersions of light absorbing solid particles or emulsions containing a light absorbing solute all have a non-uniform distribution of light absorbing species throughout the sample volume. This results in non-uniform light absorption over the illuminated area which causes the optical absorbance, as measured using a conventional specular UV-vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films which are shown to depend on the size and volume fraction of the light absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light absorbing solute. Using no adjustable parameters, the model successfully predicts the behaviour of non-uniform, light absorbing emulsion films with varying values of droplet size, volume fraction and other parameters
Saddle-splay modulus of a particle-laden fluid interface
The scaled-particle theory equation of state for the two-dimensional
hard-disk fluid on a curved surface is proposed and used to determine the
saddle-splay modulus of a particle-laden fluid interface. The resulting
contribution to saddle-splay modulus, which is caused by thermal motion of the
adsorbed particles, is comparable in magnitude with the saddle-splay modulus of
a simple fluid interface.Comment: 10 pages, 2 figure
Two-frequency forced Faraday waves: Weakly damped modes and pattern selection
Recent experiments (Kudrolli, Pier and Gollub, 1998) on two-frequency
parametrically excited surface waves exhibit an intriguing "superlattice" wave
pattern near a codimension-two bifurcation point where both subharmonic and
harmonic waves onset simultaneously, but with different spatial wavenumbers.
The superlattice pattern is synchronous with the forcing, spatially periodic on
a large hexagonal lattice, and exhibits small-scale triangular structure.
Similar patterns have been shown to exist as primary solution branches of a
generic 12-dimensional -equivariant bifurcation problem, and may
be stable if the nonlinear coefficients of the bifurcation problem satisfy
certain inequalities (Silber and Proctor, 1998). Here we use the spatial and
temporal symmetries of the problem to argue that weakly damped harmonic waves
may be critical to understanding the stabilization of this pattern in the
Faraday system. We illustrate this mechanism by considering the equations
developed by Zhang and Vinals (1997, J. Fluid Mech. 336) for small amplitude,
weakly damped surface waves on a semi-infinite fluid layer. We compute the
relevant nonlinear coefficients in the bifurcation equations describing the
onset of patterns for excitation frequency ratios of 2/3 and 6/7. For the 2/3
case, we show that there is a fundamental difference in the pattern selection
problems for subharmonic and harmonic instabilities near the codimension-two
point. Also, we find that the 6/7 case is significantly different from the 2/3
case due to the presence of additional weakly damped harmonic modes. These
additional harmonic modes can result in a stabilization of the superpatterns.Comment: 26 pages, 8 figures; minor text revisions, corrected figure 8; this
version to appear in a special issue of Physica D in memory of John David
Crawfor
Parametrically excited surface waves in magnetic fluids: observation of domain structures
Observations of parametrically excited surface waves in a magnetic fluid are
presented. Under the influence of a magnetic field these waves have a
non--monotonic dispersion relation, which leads to a richer behavior than in
ordinary liquids. We report observation of three novel effects, namely:
i) domain structures,
ii) oscillating defects and
iii) relaxational phase oscillations.Comment: to be published in Physical Review Letter
Emulsification in binary liquids containing colloidal particles: a structure-factor analysis
We present a quantitative confocal-microscopy study of the transient and
final microstructure of particle-stabilised emulsions formed via demixing in a
binary liquid. To this end, we have developed an image-analysis method that
relies on structure factors obtained from discrete Fourier transforms of
individual frames in confocal image sequences. Radially averaging the squared
modulus of these Fourier transforms before peak fitting allows extraction of
dominant length scales over the entire temperature range of the quench. Our
procedure even yields information just after droplet nucleation, when the
(fluorescence) contrast between the two separating phases is scarcely
discernable in the images. We find that our emulsions are stabilised on
experimental time scales by interfacial particles and that they are likely to
have bimodal droplet-size distributions. We attribute the latter to coalescence
together with creaming being the main coarsening mechanism during the late
stages of emulsification and we support this claim with (direct)
confocal-microscopy observations. In addition, our results imply that the
observed droplets emerge from particle-promoted nucleation, possibly followed
by a free-growth regime. Finally, we argue that creaming strongly affects
droplet growth during the early stages of emulsification. Future investigations
could clarify the link between quench conditions and resulting microstructure,
paving the way for tailor-made particle-stabilised emulsions from binary
liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102
- …