652 research outputs found
Linkage and association analysis of GAW15 simulated data: fine-mapping of chromosome 6 region
We performed linkage and family-based association analysis across chromosomes 1–22 in Replicates 1–5 of the Genetic Analysis Workshop 15 simulated data. Linkage analysis was performed using the Kong and Cox allele-sharing test as implemented in the program Merlin. Association analysis was performed using the transmission/disequilibrium test (TDT). A region on chromosome 6 was consistently highlighted as showing significant linkage to and association with the disease trait. We focused in on this region and performed fine-mapping using stepwise regression approaches using the case/control and family-based data. In this region, we also applied several new methods, implemented in the computer programs LAMP and Graphminer, respectively, that have recently been proposed for association analysis with family and/or case/control data. All methods confirmed the highly significant associations previously observed. Differentiating between potentially causal single nucleotide polymorphisms (SNPs) and other non-causal loci (associated with disease merely due to linkage disequilibrium) proved to be problematic. However, in most replicates we did identify two SNPs (either SNPs 3437 and 3439 from the dense SNP set, or SNPs 153 and 3437 from the combined non-dense/dense SNP set) that together explain most of the observed disease association in the DR/C locus region, and an additional SNP (3931 or 3933) that accounts for the association 5 cM away at locus D
Self-Contained Gene-Set Analysis of Expression Data: An Evaluation of Existing and Novel Methods
Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided into two types: competitive and self-contained. Benefits of self-contained methods include that they can be used for genome-wide, candidate gene, or pathway studies, and have been reported to be more powerful than competitive methods. We therefore investigated ten self-contained methods that can be used for continuous, discrete and time-to-event phenotypes. To assess the power and type I error rate for the various previously proposed and novel approaches, an extensive simulation study was completed in which the scenarios varied according to: number of genes in a gene set, number of genes associated with the phenotype, effect sizes, correlation between expression of genes within a gene set, and the sample size. In addition to the simulated data, the various methods were applied to a pharmacogenomic study of the drug gemcitabine. Simulation results demonstrated that overall Fisher's method and the global model with random effects have the highest power for a wide range of scenarios, while the analysis based on the first principal component and Kolmogorov-Smirnov test tended to have lowest power. The methods investigated here are likely to play an important role in identifying pathways that contribute to complex traits
Magnetic moments' arrangement in Fe layers deposited from acetone based electrolyte
The acetone based electrolyte was used for electrodeposition of iron layers on the copper substrate. Two types of surfaces of the deposited layer can be obtained: shiny or black. Magnetic properties of the near-surface regions were studied by the conversion electron MÄossbauer spectroscopy. The conversion electron MÄossbauer spectra revealed apparent dependence of magnetic moments' arrangement on the deposition time. Those results were compared with the magnetization measurements. Composition of black coating
was examined by the X-ray photoelectron spectroscopy measurements
Identification of gene-gene interaction using principal components
After more than 200 genome-wide association studies, there have been some successful identifications of a single novel locus. Thus, the identification of single-nucleotide polymorphisms (SNP) with interaction effects is of interest. Using the Genetic Analysis Workshop 16 data from the North American Rheumatoid Arthritis Consortium, we propose an approach to screen for SNP-SNP interaction using a two-stage method and an approach for detecting gene-gene interactions using principal components. We selected a set of 17 rheumatoid arthritis candidate genes to assess both approaches. Our approach using principal components holds promise in detecting gene-gene interactions. However, further study is needed to evaluate the power and the feasibility for a whole genome-wide association analysis using the principal components approach
- …