19 research outputs found
De Novo Balanced Translocation t (7;16) (p22.1; p11.2) Associated with Autistic Disorder
The high incidence of de novo chromosomal aberrations in a population of persons with autism suggests a causal relationship between certain chromosomal aberrations and the occurrence of isolated idiopathic autism. We report on the clinical and cytogenetic findings in a male patient with autism, no physical abnormalities and a de novo balanced (7;16)(p22.1;p16.2) translocation. G-banded chromosomes and fluorescent in situ hybridization (FISH) were used to examine the patient's karyotype as well as his parents'. FISH with specific RP11-BAC clones mapping near 7p22.1 and 16p11.2 was used to refine the location of the breakpoints. This is, in the best of our knowledge, the first report of an individual with autism and this specific chromosomal aberration
Multivariate analysis of morphological diversityamong closely related Daucus species and subspecies in Tunisia
Valvular involvement in ANCA-associated systemic vasculitis: a case report and literature review
Evaluation de la qualité des spermatozoïdes d'étalons pur sang Arabe congelés dans le milieu INRA 96® supplémenté de jaune d'oeuf et de glycérol
National audienc
The Creatine Transporter Gene Paralogous at 16p11.2 Is Expressed in Human Brain
Autism is a complex neurodevelopmental disorder characterized by impairment of social interaction, language, communication, and stereotyped, repetitive behavior. Genetic predisposition to autism has been demonstrated in families and twin studies. About 5–10% of autism cases are associated with chromosomal abnormalities or monogenic disorders. The identification of genes involved in the origin of autism is expected to increase our understanding of the pathogenesis.
We report on the clinical, cytogenetic, and molecular findings in a boy with autism carrying a de novo translocation t(7;16)(p22.1;p11.2). The chromosome 16 breakpoint disrupts the paralogous SLC6A8 gene also called SLC6A10 or CT2. Predicted translation of exons and RT-PCR analysis reveal specific expression of the creatine transporter paralogous in testis and brain. Several studies reported on the role of X-linked creatine transporter mutations in individuals with mental retardation, with or without autism. The existence of disruption in SLC6A8 paralogous gene associated with idiopathic autism suggests that this gene may be involved in the autistic phenotype in our patient
