58 research outputs found

    Expression and prognostic significance of cox-2 and p-53 in hodgkin lymphomas: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase (cox) is the rate-limiting enzyme, which catalyzes the conversion of arachidonic acid into prostaglandins and contributes to the inflammatory process. Cyclooxygenase-2 (cox-2), which is one of the two isoforms, plays a role in tumor progression and carcinogenesis. p53 contributes to apoptosis, DNA renewal and cell cycle. Studies concerning the relationship of cox-2 and p53 expressions and carcinogenesis are available, but the association between cox-2 and p53 in Hodgkin lymphoma (HL) is not exactly known.</p> <p>In our study, we examined the association of cox-2 and p53 expression, with age, stage, histopathological subtype, and survival in HL. We also examined correlation between cox-2 and p53 expression.</p> <p>Methods</p> <p>Cox-2 and p53 expressions in Hodgkin-Reed Sternberg cells (HRS) were examined in 54 patients with HL depending on cox-2 expression, stained cases were classified as positive, and unstained cases as negative. Nuclear staining of HRS cells with p53 was evaluated as positive. The classifications of positivity were as follows: negative if<10%; (1+) if 10-25%; (2+) if 25-50%; (3+) if 50-75%, (4+) if >75%.</p> <p>Results</p> <p>Cox-2 and p53 expressions were found in 49 (80%) and 29 (46%) patients, respectively. There were differences between histological subtypes according to cox-2 expression (p = 0.012). Mixed cellular (MC) and nodular sclerosing (NS) subtypes were seen most of the patients and cox-2 expression was evaluated mostly in the mixed cellular subtype.</p> <p>There were no statistically significant relationships between p53 and the histopathological subtypes; or between p53, cox-2 and the factors including stage, age and survival; or between p53 and cox-2 expression (p > 0.05).</p> <p>Conclusion</p> <p>Considering the significant relationship between the cox-2 expression and the subtypes of HL, cox-2 expression is higher in MC and NS subtypes. However the difference between these two subtypes was not significant. This submission must be advocated by studies with large series</p

    Molecular Dynamics Studies on Nanoscale Gas Transport

    No full text

    Molecular Dynamics Studies on Nanoscale Gas Transport

    No full text

    MD Simulations of Nano-Scale Gas Flows: A Case Study of Couette Flow at Kn=10

    No full text
    Abstract. Utilizing a recently developed 3D smart wall molecular dynamics algorithm, we investigate argon flow in a 5.4 nm channel, which corresponds to the free molecular flow regime. Simulation results are compared with the linearized Boltzmann equation solutions. Significant deviations from the kinetic theory predictions are observed for the velocity, density and average normal stress profiles in the near wall region, where the wall force field effects are dominant. The results clearly show incomplete similitude between the rarefied and nano-scale gas flows, if solely based on the Knudsen number

    MD Simulations of Nano-Scale Gas Flows: A Case Study of Couette Flow at Kn=10

    No full text
    Abstract. Utilizing a recently developed 3D smart wall molecular dynamics algorithm, we investigate argon flow in a 5.4 nm channel, which corresponds to the free molecular flow regime. Simulation results are compared with the linearized Boltzmann equation solutions. Significant deviations from the kinetic theory predictions are observed for the velocity, density and average normal stress profiles in the near wall region, where the wall force field effects are dominant. The results clearly show incomplete similitude between the rarefied and nano-scale gas flows, if solely based on the Knudsen number

    Thermal and hydrodynamic behavior of forced convection gaseous slip flow in a Kelvin cell metal foam

    No full text
    Porous metallic foams are a key material in numerous thermal and hydraulic applications. Gas flows in such micro/nanoporous systems deviate from classical continuum descriptions due to nonequilibrium in gas dynamics, and the resulted heat and mass transport show variation by rarefaction. This study performed a wide range of pore-level analysis of convective gas flows in a Kelvin cell model at different porosities and working conditions. Rarefaction effects onto permeability and heat transfer coefficients were calculated through Darcy to Forchheimer flow regimes. Permeability increased up to 60% by increasing rarefaction while this enhancement decreased by increasing porosity. At the same time, rarefaction lessened inertial effects such that Forchheimer coefficients decreased substantially. At high flow velocities, the increase in rarefaction considerably decreased the effect of drag forces. Hence, hydrodynamic enhancement due to rarefaction was found to increase by increasing Reynolds number. On the other hand, positive influence of boundary slip and negative influence of temperature jump developing between gas and solid almost canceled each other for the studied low heat flux region of highly conductive metal foam structures. Hence, Nusselt numbers were found mostly related to Reynolds number independent from rarefaction. We described Nusselt value based on power law model as a function of Reynolds and porosity. Results and the proposed model are important to accurately predict the thermal and hydrodynamic performance of metal foams in the 80 PPI range
    corecore