2,070 research outputs found

    Quasiparticle Interface States in Junctions Involving d-Wave Superconductors

    Full text link
    Influence of surface pair breaking, barrier transmission and phase difference on quasiparticle bound states in junctions with d-wave superconductors is examined. Based on the quasiclassical theory of superconductivity, an approach is developed to handle interface bound states. It is shown in SIS' junctions that low energy bound states get their energies reduced by surface pair breaking, which can be taken into account by introducing an effective order parameter for each superconductor at the junction barrier. More interestingly, for the interface bound states near the continuous spectrum the effect of surface pair breaking may result in a splitting of the bound states. In the tunneling limit this can lead to a square root dependence of a nonequilibrium Josephson current on the barrier transmision, which means an enhancement as compared to the conventional critical current linear in the transmission. Reduced broadening of bound states in NIS junctions due to surface pair breaking is found.Comment: 27 pages, Latex fil

    Superconducting Junctions with Ferromagnetic, Antiferromagnetic or Charge-Density-Wave Interlayers

    Full text link
    Spectra and spin structures of Andreev interface states and the Josephson current are investigated theoretically in junctions between clean superconductors (SC) with ordered interlayers. The Josephson current through the ferromagnet-insulator-ferromagnet interlayer can exhibit a nonmonotonic dependence on the misorientation angle. The characteristic behavior takes place if the pi state is the equilibrium state of the junction in the particular case of parallel magnetizations. We find a novel channel of quasiparticle reflection (Q reflection) from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. As a combined effect of Andreev and Q reflections, Andreev states arise at the AF/SC interface. When the Q reflection dominates the specular one, Andreev bound states have almost zero energy on AF/ s-wave SC interfaces, whereas they lie near the edge of the continuous spectrum for AF/d-wave SC boundaries. For an s-wave SC/AF/s-wave SC junction, the bound states are found to split and carry the supercurrent. Our analytical results are based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets. Similar effects can take place on interfaces of superconductors with charge density wave materials (CDW), including the possible d-density wave state (DDW) of the cuprates.Comment: LT24 conference proceeding, 2 pages, 1 figur

    Transport through superconductor/magnetic dot/superconductor structures

    Full text link
    The coupling of two s-wave superconductors through a small magnetic dot is discussed. Assuming that the dot charging energy is small compared to the superconducting gap, EcΔE_c\ll \Delta, and that the moment of the dot is classical, we develop a simple theory of transport through the dot. The presence of the magnetic dot will position Andreev bound states within the superconducting gap at energies tunable with the magnetic properties of the dot. Studying the Josephson coupling it is shown that the constructed junction can be tuned from a "0" to a "π\pi"-junction via a degenerate two-level state either by changing the magnetic moment of the dot or by changing temperature. Furthermore, it is shown that details of the magnetic dot can be extracted from the sub-harmonic structure in the current-voltage characteristics of the junction.Comment: 5 pages, 4 figures, paper presented at the conference SDP 2001 in Tokyo on June 2

    Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions

    Full text link
    The behavior of dc subgap current in magnetic quantum point contact is discussed for the case of low-transparency junction with different tunnel probabilities for spin-up (DD_\uparrow) and spin-down (DD_\downarrow) electrons. Due to the presence of Andreev bound states ±ϵ0\pm \epsilon_0 in the system the positions of subgap electric current steps eVn=(Δ±ϵ0)/neV_n = (\Delta \pm \epsilon_0)/n are split at temperature T0T \neq 0 with respect to the nonmagnetic result eVn=2Δ/neV_n=2\Delta/n. It is found that under the condition DDD_\uparrow \neq D_\downarrow the spin current also manifests subgap structure, but only for odd values of nn. The split steps corresponding to n=1,2n=1,2 in subgap electric and spin currents are analytically calculated and the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde

    Combined Paramagnetic and Diamagnetic Response of YBCO

    Full text link
    It has been predicted that the zero frequency density of states of YBCO in the superconducting phase can display interesting anisotropy effects when a magnetic field is applied parallel to the copper-oxide planes, due to the diamagnetic response of the quasi-particles. In this paper we incorporate paramagnetism into the theory and show that it lessens the anisotropy and can even eliminate it altogether. At the same time paramagnetism also changes the scaling with the square root of the magnetic field first deduced by Volovik leading to an experimentally testable prediction. We also map out the analytic structure of the zero frequency density of states as a function of the diamagnetic and paramagnetic energies. At certain critical magnetic field values we predict kinks as we vary the magnetic field. However these probably lie beyond currently accessible field strengths

    A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle

    Full text link
    In this paper we describe an approach to Casimir Force problems that is ultimately generalizable to all fields, boundary conditions, and cavity geometries. This approach utilizes locally defined reflection amplitudes to express the energy per unit area of any Casimir interaction. To demonstrate this approach we solve a number of Casimir Force problems including the case of uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a typ

    Collective charge fluctuations and Casimir interactions for quasi one-dimensional metals

    Full text link
    We investigate the Casimir interaction between two parallel metallic cylinders and between a metallic cylinder and plate. The material properties of the metallic objects are implemented by the plasma, Drude and perfect metal model dielectric functions. We calculate the Casimir interaction numerically at all separation distances and analytically at large separations. The large-distance asymptotic interaction between one plasma cylinder parallel to another plasma cylinder or plate does not depend on the material properties, but for a Drude cylinder it depends on the dc conductivity σ\sigma. At intermediate separations, for plasma cylinders the asymptotic interaction depends on the plasma wave length λp\lambda_{\rm p} while for Drude cylinders the Casimir interaction can become independent of the material properties. We confirm the analytical results by the numerics and show that at short separations, the numerical results approach the proximity force approximation
    corecore