2,070 research outputs found
Quasiparticle Interface States in Junctions Involving d-Wave Superconductors
Influence of surface pair breaking, barrier transmission and phase difference
on quasiparticle bound states in junctions with d-wave superconductors is
examined. Based on the quasiclassical theory of superconductivity, an approach
is developed to handle interface bound states. It is shown in SIS' junctions
that low energy bound states get their energies reduced by surface pair
breaking, which can be taken into account by introducing an effective order
parameter for each superconductor at the junction barrier. More interestingly,
for the interface bound states near the continuous spectrum the effect of
surface pair breaking may result in a splitting of the bound states. In the
tunneling limit this can lead to a square root dependence of a nonequilibrium
Josephson current on the barrier transmision, which means an enhancement as
compared to the conventional critical current linear in the transmission.
Reduced broadening of bound states in NIS junctions due to surface pair
breaking is found.Comment: 27 pages, Latex fil
Superconducting Junctions with Ferromagnetic, Antiferromagnetic or Charge-Density-Wave Interlayers
Spectra and spin structures of Andreev interface states and the Josephson
current are investigated theoretically in junctions between clean
superconductors (SC) with ordered interlayers. The Josephson current through
the ferromagnet-insulator-ferromagnet interlayer can exhibit a nonmonotonic
dependence on the misorientation angle. The characteristic behavior takes place
if the pi state is the equilibrium state of the junction in the particular case
of parallel magnetizations. We find a novel channel of quasiparticle reflection
(Q reflection) from the simplest two-sublattice antiferromagnet (AF) on a
bipartite lattice. As a combined effect of Andreev and Q reflections, Andreev
states arise at the AF/SC interface. When the Q reflection dominates the
specular one, Andreev bound states have almost zero energy on AF/ s-wave SC
interfaces, whereas they lie near the edge of the continuous spectrum for
AF/d-wave SC boundaries. For an s-wave SC/AF/s-wave SC junction, the bound
states are found to split and carry the supercurrent. Our analytical results
are based on a novel quasiclassical approach, which applies to interfaces
involving itinerant antiferromagnets. Similar effects can take place on
interfaces of superconductors with charge density wave materials (CDW),
including the possible d-density wave state (DDW) of the cuprates.Comment: LT24 conference proceeding, 2 pages, 1 figur
Transport through superconductor/magnetic dot/superconductor structures
The coupling of two s-wave superconductors through a small magnetic dot is
discussed. Assuming that the dot charging energy is small compared to the
superconducting gap, , and that the moment of the dot is
classical, we develop a simple theory of transport through the dot. The
presence of the magnetic dot will position Andreev bound states within the
superconducting gap at energies tunable with the magnetic properties of the
dot. Studying the Josephson coupling it is shown that the constructed junction
can be tuned from a "0" to a ""-junction via a degenerate two-level state
either by changing the magnetic moment of the dot or by changing temperature.
Furthermore, it is shown that details of the magnetic dot can be extracted from
the sub-harmonic structure in the current-voltage characteristics of the
junction.Comment: 5 pages, 4 figures, paper presented at the conference SDP 2001 in
Tokyo on June 2
Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions
The behavior of dc subgap current in magnetic quantum point contact is
discussed for the case of low-transparency junction with different tunnel
probabilities for spin-up () and spin-down ()
electrons. Due to the presence of Andreev bound states in the
system the positions of subgap electric current steps are split at temperature with respect to the
nonmagnetic result . It is found that under the condition
the spin current also manifests subgap
structure, but only for odd values of . The split steps corresponding to
in subgap electric and spin currents are analytically calculated and
the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde
Combined Paramagnetic and Diamagnetic Response of YBCO
It has been predicted that the zero frequency density of states of YBCO in
the superconducting phase can display interesting anisotropy effects when a
magnetic field is applied parallel to the copper-oxide planes, due to the
diamagnetic response of the quasi-particles. In this paper we incorporate
paramagnetism into the theory and show that it lessens the anisotropy and can
even eliminate it altogether. At the same time paramagnetism also changes the
scaling with the square root of the magnetic field first deduced by Volovik
leading to an experimentally testable prediction. We also map out the analytic
structure of the zero frequency density of states as a function of the
diamagnetic and paramagnetic energies. At certain critical magnetic field
values we predict kinks as we vary the magnetic field. However these probably
lie beyond currently accessible field strengths
A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle
In this paper we describe an approach to Casimir Force problems that is
ultimately generalizable to all fields, boundary conditions, and cavity
geometries. This approach utilizes locally defined reflection amplitudes to
express the energy per unit area of any Casimir interaction. To demonstrate
this approach we solve a number of Casimir Force problems including the case of
uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a
typ
Collective charge fluctuations and Casimir interactions for quasi one-dimensional metals
We investigate the Casimir interaction between two parallel metallic
cylinders and between a metallic cylinder and plate. The material properties of
the metallic objects are implemented by the plasma, Drude and perfect metal
model dielectric functions. We calculate the Casimir interaction numerically at
all separation distances and analytically at large separations. The
large-distance asymptotic interaction between one plasma cylinder parallel to
another plasma cylinder or plate does not depend on the material properties,
but for a Drude cylinder it depends on the dc conductivity . At
intermediate separations, for plasma cylinders the asymptotic interaction
depends on the plasma wave length while for Drude cylinders
the Casimir interaction can become independent of the material properties. We
confirm the analytical results by the numerics and show that at short
separations, the numerical results approach the proximity force approximation
- …
