18 research outputs found

    Global Charges in Chern-Simons theory and the 2+1 black hole

    Full text link
    We use the Regge-Teitelboim method to treat surface integrals in gauge theories to find global charges in Chern-Simons theory. We derive the affine and Virasoro generators as global charges associated with symmetries of the boundary. The role of boundary conditions is clarified. We prove that for diffeomorphisms that do not preserve the boundary there is a classical contribution to the central charge in the Virasoro algebra. The example of anti-de Sitter 2+1 gravity is considered in detail.Comment: Revtex, no figures, 26 pages. Important changes introduced. One section added

    Black Hole Entropy and the Dimensional Continuation of the Gauss-Bonnet Theorem

    Full text link
    The Euclidean black hole has topology 2×Sd2\Re^2 \times {\cal S}^{d-2}. It is shown that -in Einstein's theory- the deficit angle of a cusp at any point in 2\Re^2 and the area of the Sd2{\cal S}^{d-2} are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the Sd2{\cal S}^{d-2} there.These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension to the most general action yielding second order field equations for the metric in any spacetime dimension is given.Comment: 7 pages, RevTe

    Aspects of Black Hole Quantum Mechanics and Thermodynamics in 2+1 Dimensions

    Get PDF
    We discuss the quantum mechanics and thermodynamics of the (2+1)-dimensional black hole, using both minisuperspace methods and exact results from Chern-Simons theory. In particular, we evaluate the first quantum correction to the black hole entropy. We show that the dynamical variables of the black hole arise from the possibility of a deficit angle at the (Euclidean) horizon, and briefly speculate as to how they may provide a basis for a statistical picture of black hole thermodynamics.Comment: 20 pages and 2 figures, LaTeX, IASSNS-HEP-94/34 and UCD-94-1

    Supersymmetry of the 2+1 black holes

    Full text link
    The supersymmetry properties of the asymptotically anti-de Sitter black holes of Einstein theory in 2+1 dimensions are investigated. It is shown that (i) the zero mass black hole has two exact super- symmetries; (ii) extreme lM=JlM=|J| black holes with M0M \not= 0 have only one; and (iii) generic black holes do not have any. It is also argued that the zero mass hole is the ground state of (1,1)-adS supergravity with periodic (``Ramond") boundary conditions on the spinor fields.Comment: 9 pages LaTeX file, ULB-PMIF-93/0

    The Statistical Mechanics of the (2+1)-Dimensional Black Hole

    Get PDF
    The presence of a horizon breaks the gauge invariance of (2+1)-dimensional general relativity, leading to the appearance of new physical states at the horizon. I show that the entropy of the (2+1)-dimensional black hole can be obtained as the logarithm of the number of these microscopic states.Comment: 12 pages, UCD-94-32 and NI-9401

    A comparison of Noether charge and Euclidean methods for Computing the Entropy of Stationary Black Holes

    Full text link
    The entropy of stationary black holes has recently been calculated by a number of different approaches. Here we compare the Noether charge approach (defined for any diffeomorphism invariant Lagrangian theory) with various Euclidean methods, specifically, (i) the microcanonical ensemble approach of Brown and York, (ii) the closely related approach of Ba\~nados, Teitelboim, and Zanelli which ultimately expresses black hole entropy in terms of the Hilbert action surface term, (iii) another formula of Ba\~nados, Teitelboim and Zanelli (also used by Susskind and Uglum) which views black hole entropy as conjugate to a conical deficit angle, and (iv) the pair creation approach of Garfinkle, Giddings, and Strominger. All of these approaches have a more restrictive domain of applicability than the Noether charge approach. Specifically, approaches (i) and (ii) appear to be restricted to a class of theories satisfying certain properties listed in section 2; approach (iii) appears to require the Lagrangian density to be linear in the curvature; and approach (iv) requires the existence of suitable instanton solutions. However, we show that within their domains of applicability, all of these approaches yield results in agreement with the Noether charge approach. In the course of our analysis, we generalize the definition of Brown and York's quasilocal energy to a much more general class of diffeomorphism invariant, Lagrangian theories of gravity. In an appendix, we show that in an arbitrary diffeomorphism invariant theory of gravity, the ``volume term" in the ``off-shell" Hamiltonian associated with a time evolution vector field tat^a always can be expressed as the spatial integral of taCat^a {\cal C}_a, where Ca=0{\cal C}_a = 0 are the constraints associated with the diffeomorphism invariance.Comment: 29 pages (double-spaced) late

    Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy

    Full text link
    We consider a general, classical theory of gravity with arbitrary matter fields in nn dimensions, arising from a diffeomorphism invariant Lagrangian, \bL. We first show that \bL always can be written in a ``manifestly covariant" form. We then show that the symplectic potential current (n1)(n-1)-form, th\th, and the symplectic current (n1)(n-1)-form, \om, for the theory always can be globally defined in a covariant manner. Associated with any infinitesimal diffeomorphism is a Noether current (n1)(n-1)-form, \bJ, and corresponding Noether charge (n2)(n-2)-form, \bQ. We derive a general ``decomposition formula" for \bQ. Using this formula for the Noether charge, we prove that the first law of black hole mechanics holds for arbitrary perturbations of a stationary black hole. (For higher derivative theories, previous arguments had established this law only for stationary perturbations.) Finally, we propose a local, geometrical prescription for the entropy, SdynS_{dyn}, of a dynamical black hole. This prescription agrees with the Noether charge formula for stationary black holes and their perturbations, and is independent of all ambiguities associated with the choices of \bL, th\th, and \bQ. However, the issue of whether this dynamical entropy in general obeys a ``second law" of black hole mechanics remains open. In an appendix, we apply some of our results to theories with a nondynamical metric and also briefly develop the theory of stress-energy pseudotensors.Comment: 30 pages, LaTe

    Mass Spectrum of Strings in Anti de Sitter Spacetime

    Get PDF
    We perform string quantization in anti de Sitter (AdS) spacetime. The string motion is stable, oscillatory in time with real frequencies ωn=n2+m2α2H2\omega_n= \sqrt{n^2+m^2\alpha'^2H^2} and the string size and energy are bounded. The string fluctuations around the center of mass are well behaved. We find the mass formula which is also well behaved in all regimes. There is an {\it infinite} number of states with arbitrarily high mass in AdS (in de Sitter (dS) there is a {\it finite} number of states only). The critical dimension at which the graviton appears is D=25,D=25, as in de Sitter space. A cosmological constant Λ0\Lambda\neq 0 (whatever its sign) introduces a {\it fine structure} effect (splitting of levels) in the mass spectrum at all states beyond the graviton. The high mass spectrum changes drastically with respect to flat Minkowski spacetime. For ΛΛN2,\Lambda\sim \mid\Lambda\mid N^2, {\it independent} of α,\alpha', and the level spacing {\it grows} with the eigenvalue of the number operator, N.N. The density of states ρ(m)\rho(m) grows like \mbox{Exp}[(m/\sqrt{\mid\Lambda\mid}\;)^{1/2}] (instead of \rho(m)\sim\mbox{Exp}[m\sqrt{\alpha'}] as in Minkowski space), thus {\it discarding} the existence of a critical string temperature. For the sake of completeness, we also study the quantum strings in the black string background, where strings behave, in many respects, as in the ordinary black hole backgrounds. The mass spectrum is equal to the mass spectrum in flat Minkowski space.Comment: 31 pages, Latex, DEMIRM-Paris-9404

    Critical Behavior of Dimensionally Continued Black Holes

    Full text link
    The critical behavior of black holes in even and odd dimensional spacetimes is studied based on Ba\~nados-Teitelboim-Zanelli (BTZ) dimensionally continued black holes. In even dimensions it is found that asymptotically flat and anti de-Sitter Reissner-Nordstr\"om black holes present up to two second order phase transitions. The case of asymptotically anti-de-Sitter Schwarzschild black holes present only one critical transition and a minimum of temperature, which occurs at the transition. Finally, it is shown that phase transitions are absent in odd dimensions.Comment: 21 pages in Latex format, no figures, vastly improved version to appear in Phys. Rev.

    One-loop Renormalization of Black Hole Entropy Due to Non-minimally Coupled Matter

    Get PDF
    The quantum entanglement entropy of an eternal black hole is studied. We argue that the relevant Euclidean path integral is taken over fields defined on α\alpha-fold covering of the black hole instanton. The statement that divergences of the entropy are renormalized by renormalization of gravitational couplings in the effective action is proved for non-minimally coupled scalar matter. The relationship of entanglement and thermodynamical entropies is discussed.Comment: 17 pages, latex, no figure
    corecore