15 research outputs found

    Quark stars and quantum-magnetically induced collapse

    Full text link
    Quark matter is expected to exist in the interior of compact stellar objects as neutron stars or even the more exotic strange stars, based on the Bodmer-Witten conjecture. Bare strange quark stars and (normal) strange quark-matter stars, those possessing a baryon (electron-supported) crust, are hypothesized as good candidates to explain the properties of a set of peculiar stellar sources as the enigmatic X-ray source RX J1856.5-3754, some pulsars as PSR B1828-11 and PSR B1642-03, and the anomalous X-ray pulsars and soft gamma-ray repeaters. In the MIT bag model, quarks are treated as a degenerate Fermi gas confined to a region of space having a vacuum energy density BbagB_{bag} (the Bag constant). In this note, we modif{}y the MIT Bag Model by including the electromagnetic interaction. We also show that this version of the MIT model implies the anisotropy of the Bag pressure due to the presence of the magnetic field. The equations of state of degenerate quarks gases are studied in the presence of ultra strong magnetic fields. The behavior of a system made-up of quarks having (or not) anomalous magnetic moment is reviewed. A structural instability is found, which is related to the anisotropic nature of the pressures in this highly magnetized matter. The conditions for the collapse of this system are obtained and compared to a previous model of neutron stars build-up on a neutron gas having anomalous magnetic moment.Comment: 11 pages, 2 figure

    Antibody repertoire profiling with mimotope arrays

    No full text
    Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are proven to be epitopes driving the antibody synthesis. Here, the advantages and disadvantages of the major profiling techniques as well as their current and future application in disease prediction and vaccination are discussed

    Unique repertoire of anti-carbohydrate antibodies in individual human serum.

    Get PDF
    Humoral immunity to pathogens and other environmental challenges is paramount to maintain normal health, and individuals lacking or unable to make antibodies are at risk. Recent studies indicate that many human protective antibodies are against carbohydrate antigens; however, little is known about repertoires and individual variation of anti-carbohydrate antibodies in healthy individuals. Here we analyzed anti-carbohydrate antibody repertoires (ACARs) of 105 healthy individual adult donors, aged 20-60+ from different ethnic backgrounds to explore variations in antibodies, as defined by binding to glycan microarrays and by affinity purification. Using microarrays that contained > 1,000 glycans, including antigens from animal cells and microbes, we profiled the IgG and IgM ACARs from all donors. Each donor expressed many ACAs, but had a relatively unique ACAR, which included unanticipated antibodies to carbohydrate antigens not well studied, such as chitin oligosaccharides, Forssman-related antigens, globo-type antigens, and bacterial glycans. We also saw some expected antibodies to ABO(H) blood group and α-Gal-type antigens, although these also varied among individuals. Analysis suggests differences in ACARs are associated with ethnicity and age. Thus, each individual ACAR is relatively unique, suggesting that individualized information could be useful in precision medicine for predicting and monitoring immune health and resistance to disease

    Small Molecule Drugs That Inhibit Phagocytosis

    No full text
    In our initial publication on the in vitro testing of more than 200 compounds, we demonstrated that small molecules can inhibit phagocytosis. We therefore theorized that a small molecule drug discovery-based approach to the treatment of immune cytopenias (ITP, AIHA, HTR, DHTR) is feasible. Those earlier studies showed that small molecules with anti-phagocytic groups, such as the pyrazole core, are good models for producing efficacious phagocytosis inhibitors with low toxicity. We recently screened a chemical library of 80 compounds containing pyrazole/isoxazole/pyrrole core structures and found four hit molecules for further follow-up, all having the pyrazole core structure. Subsequent evaluation via MTT viability, LDH release, and apoptosis, led to the selection of two lead compounds with negligible toxicity and high efficacy. In an in vitro assay for inhibition of phagocytosis, their IC50 values were 2–4 µM. The rational development of these discoveries from hit to lead molecule stage, viz. independent synthesis/scale up of hit molecules, and in vivo activities in mouse models of autoimmune disease, will result in the selection of a lead compound(s) for further pre-clinical evaluation

    Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance.

    Get PDF
    Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation

    Integral field spectroscopy of radio galaxy B2 0902+34

    No full text
    We have used the Visible Integral-field Replicable Unit Spectrograph Prototype (VIRUS-P), a new Integral Field Unit (IFU) Spectrograph, to study the spatially and spectrally resolved Lyman-[Greek small letter alpha] emission line structure in the radio galaxy B2 0902+34 at z [similar to] 3.4. VIRUS-P has a large field of view (3.2 sq. arcmin) and is very sensitive to low surface brightness emission. A halo of Ly [Greek small letter alpha] emission with velocity dispersion of [similar to] 600km s⁻¹ extends to 100 kpc, larger than previously detected with narrowband imaging and longslit spectroscopy. A newly discovered blue emission feature appears in the southwest with a velocity separation of [similar to] −700 km s⁻¹. We interpret this emission feature as the far side ionization cone with central infall while the brighter, more circularly distributed, and distinct kinematic component is the near side ionization cone. We present a simple model which reproduces the optical spectroscopic and radio data. We have also made the first optical detection of the neutral hydrogen (HI) absorption feature presented in earlier radio data. Lastly, we have searched the surrounding 3.2 sq. arcmin for companion galaxies. To a flux level of [similar to] 7×10⁻¹⁷ erg s⁻¹ cm⁻², we detect one possible companion in Lyman-[Greek small letter alpha]. We interpret the system as a proto-giant elliptical galaxy in a protocluster still in the act of mass accumulation.Astronom

    IgA Triggers Cell Death of Neutrophils When Primed by Inflammatory Mediators.

    No full text
    IVIG preparations consisting of pooled IgG are increasingly used for the treatment of autoimmune diseases. IVIG is known to regulate the viability of immune cells, including neutrophils. We report that plasma-derived IgA efficiently triggers death of neutrophils primed by cytokines or TLR agonists. IgA-mediated programmed neutrophil death was PI3K-, p38 MAPK-, and JNK-dependent and evoked anti-inflammatory cytokines in macrophage cocultures. Neutrophils from patients with acute Crohn's disease, rheumatoid arthritis, or sepsis were susceptible to both IgA- and IVIG-mediated death. In contrast to IVIG, IgA did not promote cell death of quiescent neutrophils. Our findings suggest that plasma-derived IgA might provide a therapeutic option for the treatment of neutrophil-associated inflammatory disorders
    corecore