9,143 research outputs found

    Strong spin-lattice coupling in multiferroic HoMnO3_{3}: Thermal expansion anomalies and pressure effect

    Full text link
    Evidence for a strong spin-lattice coupling in multiferroic HoMnO_3 is derived from thermal expansion measurements along a- and c-axis. The magnetoelastic effect results in sizable anomalies of the thermal expansivities at the antiferromagnetic (T_N) and the spin rotation (T_{SR}) transition temperatures as well as in a negative c-axis expansivity below room temperature. The coupling between magnetic orders and dielectric properties below T_N is explained by the lattice strain induced by the magnetoelastic effect. At T_{SR} various physical quantities show discontinuities that are thermodynamically consistent with a first order phase transition

    Low temperature dielectric anomalies in HoMnO_3: The complex phase diagram

    Full text link
    The dielectric constant of multiferroic hexagonal HoMnO_3 exhibits an unprecedented diversity of anomalies at low temperatures (1.8 K< T <10 K) and under external magnetic fields related to magnetic phase transitions in the coupled system of Ho moments, Mn spins, and ferroelectric polarization. The derived phase diagram is far more complex than previously assumed including reentrant phases, phase transitions with distinct thermal and field hysteresis, as well as several multicritical points. Magnetoelastic interactions introduce lattice anomalies at the magnetic phase transitions. The re-evaluation of the T-H phase diagram of HoMnO_3 is demanded.Comment: 12 pages, 3 figure

    Pressure induced enhancement of ferroelectricity in multiferroic RRMn2_2O5_5(RR=Tb,Dy, and Ho)

    Full text link
    Measurements of ferroelectric polarization and dielectric constant were done on RRMn2_2O5_5 (RR=Tb, Dy, and Ho) with applied hydrostatic pressures of up to 18 kbar. At ambient pressure, distinctive anomalies were observed in the temperature profile of both physical properties at critical temperatures marking the onset of long range AFM order (TN1_{N1}), ferroelectricity (TC1_{C1}) as well as at temperatures when anomalous changes in the polarization, dielectric constant and spin wave commensurability have been previously reported. In particular, the step in the dielectric constant at low temperatures (TC2_{C2}), associated with both a drop in the ferroelectric polarization and an incommensurate magnetic structure, was shown to be suddenly quenched upon passing an RR-dependent critical pressure. This was shown to correlate with the stabilization of the high ferroelectric polarization state which is coincident with the commensurate magnetic structure. The observation is suggested to be due to a pressure induced phase transition into a commensurate magnetic structure as exemplified by the pressure-temperature (pp-TT) phase diagrams constructed in this work. The pp-TT phase diagrams are determined for all three compounds.Comment: 8 pages, 6 figures, submitted for review in Phys. Rev.

    The Unusual Superconducting State at 49 K in Electron-Doped CaFe2As2 at Ambient

    Full text link
    We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe2As2 via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at ~ 49 K, which has a low critical field ~ 4 Oe, and the other at ~ 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (Tc) only up to 38 K and pressurization has been reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K phase detected will be discussed.Comment: 11 pages, 8 figure

    The complex multiferroic phase diagram of Mn1x_{1-x}Cox_xWO4_4

    Full text link
    The complete magnetic and multiferroic phase diagram of Mn1x_{1-x}Cox_{x}WO4_4 single crystals is investigated by means of magnetic, heat capacity, and polarization experiments. We show that the ferroelectric polarization P\overrightarrow{P} in the multiferroic state abruptly changes its direction twice upon increasing Co content, x. At xc1_{c1}=0.075, P\overrightarrow{P} rotates from the bb-axis into the aca-c plane and at xc2_{c2}=0.15 it flips back to the bb-axis. The origin of the multiple polarization flops is identified as an effect of the Co anisotropy on the orientation and shape of the spin helix leading to thermodynamic instabilities caused by the decrease of the magnitude of the polarization in the corresponding phases. A qualitative description of the ferroelectric polarization is derived by taking into account the intrachain (cc-axis) as well as the interchain (aa-axis) exchange pathways connecting the magnetic ions. In a narrow Co concentration range (0.1\leqx\leq0.15), an intermediate phase, sandwiched between the collinear high-temperature and the helical low-temperature phases, is discovered. The new phase exhibits a collinear and commensurate spin modulation similar to the low-temperature magnetic structure of MnWO4_4.Comment: 18 pages, 6 figure

    String interactions and discrete symmetries of the pp-wave background

    Get PDF
    Free string theory on the plane-wave background displays a discrete Z2 symmetry exchanging the two transverse SO(4) rotation groups. This symmetry should be respected also at the interacting level. We show that the zero mode structure proposed in hep-th/0208148 can be completed to a full kinematical vertex, contrary to claims appeared in the previous literature. We also comment on the relation with recent works on the string-bit formalism and on the comparison with the field theory side of the correspondence.Comment: Proceeding of the 35th Symposium Ahrenshoop Aug 2002 and the Leuven RTN-workshop Sept 200

    Magnetoelectric Effect and Spontaneous Polarization in HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4

    Full text link
    The thermodynamic, magnetic, dielectric, and magnetoelectric properties of HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 are investigated. Both compounds show a second order Ne\'{e}l transition above 30 K and a first order spin reorientation transition below 10 K. HoFe3_3(BO3_3)4_4 develops a spontaneous electrical polarization below the Ne\'{e}l temperature (TN_N) which is diminished in external magnetic fields. No magnetoelectric effect could be observed in HoFe3_3(BO3_3)4_4. In contrast, the solid solution Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 exhibits both, a spontaneous polarization below TN_N and a magnetoelectric effect at higher fields that extends to high temperatures. The superposition of spontaneous polarization, induced by the internal magnetic field in the ordered state, and the magnetoelectric polarizations due to the external field results in a complex behavior of the total polarization measured as a function of temperature and field.Comment: 12 pages, 15 figure

    Worldvolume Uncertainty Relations for D-Branes

    Get PDF
    By quantizing an open string ending on a D-brane in a nontrivial supergravity background, we argue that there is a new kind of uncertainty relation on a D-brane worldvolume. Furthermore, we fix the form of the uncertainty relations and their dependence on the string coupling constant by requiring them to be consistent with various string theory and M theory dualities. In this way we find a web of uncertainties of spacetime for all kinds of brane probes, including fundamental strings, D-branes of all dimensions as well as M theory membranes and fivebranes.Comment: 19 pages, minor modification on p.

    Cubic String Field Theory in pp-wave Background and Background Independent Moyal Structure

    Full text link
    We study Witten open string field theory in the pp-wave background in the tensionless limit, and construct the N-string vertex in the basis which diagonalizes the string perturbative spectrum. We found that the Witten *-product can be viewed as infinite copies of the Moyal product with the same noncommutativity parameter θ=2\theta=2. Moreover, we show that this Moyal structure is universal in the sense that, written in the string bit basis, Witten's *-product for any background can always be given in terms of the above-mentioned Moyal structure. We identify some projective operators in this algebra that we argue to correspond to D-branes of the theory.Comment: Latex, 23 pages, reference adde

    Interplay between magnetism and superconductivity and appearance of a second superconducting transition in alpha-FeSe at high pressure

    Full text link
    We synthesized tetragonal alpha-FeSe by melting a powder mixture of iron and selenium at high pressure. Subsequent annealing at normal pressure results in removing traces of hexagonal beta- FeSe, formation of a rather sharp transition to superconducting state at Tc ~ 7 K, and the appearance of a magnetic transition near Tm = 120 K. Resistivity and ac-susceptibility were measured on the annealed sample at hydrostatic pressure up to 4.5 GPa. A magnetic transition visible in ac-susceptibility shifts down under pressure and the resistive anomaly typical for a spin density wave (SDW) antiferromagnetic transition develops near the susceptibility anomaly. Tc determined by the appearance of a diamagnetic response in susceptibility, increases linearly under pressure at a rate dTc/dP = 3.5 K/GPa. Below 1.5 GPa, the resistive superconducting transition is sharp; the width of transition does not change with pressure; and, Tc determined by a peak in drho/dT increases at a rate ~ 3.5 K/GPa. At higher pressure, a giant broadening of the resistive transition develops. This effect cannot be explained by possible pressure gradients in the sample and is inherent to alpha-FeSe. The dependences drho(T)/dT show a signature for a second peak above 3 GPa which is indicative of the appearance of another superconducting state in alpha-FeSe at high pressure. We argue that this second superconducting phase coexists with SDW antiferromagnetism in a partial volume fraction and originates from pairing of charge carriers from other sheets of the Fermi surface
    corecore