191 research outputs found

    Pulsar Kicks With Modified URCA and Electrons in Landau Levels

    Full text link
    We derive the energy asymmetry given the proto-neutron star during the time when the neutrino sphere is near the surface of the proto-neutron star, using the modified URCA process. The electrons produced with the anti-neutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of the eletrons to be in the lowest Landau level, however, there is no direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated in the direction of the magnetic field. We predict a pulsar velocity of 1.03 ×10−4(T/1010K)7\times 10^{-4} (T/10^{10}K)^7 km/s, which reaches 1000 km/s if T ≃9.96×1010\simeq 9.96 \times 10^{10} K.Comment: 11 pages, 6 figure

    Non-abelian dynamics in first-order cosmological phase transitions

    Full text link
    Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented.Comment: 8 pages, 2 figures. Contribution to the CosPA 2003 Cosmology and Particle Astrophysics Symposium. Typos correcte

    Role of Charged Gauge Fields in Generating Magnetic Seed Fields in Bubble Collisions during the Cosmological Electroweak Phase Transition

    Full text link
    We calculate the magnetic field generated during bubble collisions in a first-order electroweak phase transition that may occur for some choices of parameters in the minimal supersymmetric Standard Model. We show that for sufficiently gentle collisions, where the Higgs field is relatively unperturbed in the bubble overlap region, the equations of motion can be linearized so that in the absence of fermions the charged W fields are the source of the electromagnetic current for generating the seed fields. Solutions of the equations of motion for the charged gauge fields and Maxwell's equations for the magnetic field in O(1,2) space-time symmetry are expressed in closed form by applying boundary conditions at the time of collision. Our results indicate that the magnetic fields generated by charged W±W^{\pm} fields in the collision are comparable to those found in previous work. The magnetic fields so produced could seed galactic and extra-galactic magnetic fields observed today.Comment: 15 Pages, 7 Figure
    • …
    corecore