153 research outputs found

    Faraday effect : a field theoretical point of view

    Full text link
    We analyze the structure of the vacuum polarization tensor in the presence of a background electromagnetic field in a medium. We use various discrete symmetries and crossing symmetry to constrain the form factors obtained for the most general case. From these symmetry arguments, we show why the vacuum polarization tensor has to be even in the background field when there is no background medium. Taking then the background field to be purely magnetic, we evaluate the vacuum polarization to linear order in it. The result shows the phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization of a plane polarized light passing through this background. We find that the usual expression for Faraday rotation, which is derived for a non-degenerate plasma in the non-relativistic approximation, undergoes substantial modification if the background is degenerate and/or relativistic. We give explicit expressions for Faraday rotation in completely degenerate and ultra-relativistic media.Comment: 20 pages, Latex, uses axodraw.st

    Pion propagation in the linear sigma model at finite temperature

    Get PDF
    We construct effective one-loop vertices and propagators in the linear sigma model at finite temperature, satisfying the chiral Ward identities and thus respecting chiral symmetry, treating the pion momentum, pion mass and temperature as small compared to the sigma mass. We use these objects to compute the two-loop pion self-energy. We find that the perturbative behavior of physical quantities, such as the temperature dependence of the pion mass, is well defined in this kinematical regime in terms of the parameter m_pi^2/4pi^2f_pi^2 and show that an expansion in terms of this reproduces the dispersion curve obtained by means of chiral perturbation theory at leading order. The temperature dependence of the pion mass is such that the first and second order corrections in the above parameter have the same sign. We also study pion damping both in the elastic and inelastic channels to this order and compute the mean free path and mean collision time for a pion traveling in the medium before forming a sigma resonance and find a very good agreement with the result from chiral perturbation theory when using a value for the sigma mass of 600 MeV.Comment: 18 pages, 11 figures, uses RevTeX and epsfig. Expanded conclusions, added references. To appear in Phys. Rev.

    Signal of Quark Deconfinement in the Timing Structure of Pulsar Spin-Down

    Get PDF
    The conversion of nuclear matter to quark matter in the core of a rotating neutron star alters its moment of inertia. Hence the epoch over which conversion takes place will be signaled in the spin-down "signal_prl.tex" 581 lines, 22203 characters characteristics of pulsars. We find that an observable called the braking index should be easily measurable during the transition epoch and can have a value far removed (by orders of magnitude) from the canonical value of three expected for magnetic dipole radiation, and may have either sign. The duration of the transition epoch is governed by the slow loss of angular momentum to radiation and is further prolonged by the reduction in the moment of inertia caused by the phase change which can even introduce an era of spin-up. We estimate that about one in a hundred pulsars may be passing through this phase. The phenomenon is analogous to ``bachbending'' observed in the moment of inertia of rotating nuclei observed in the 1970's, which also signaled a change in internal structure with changing spin.Comment: 5 pages, 4 figures, Revtex. (May 12, 1997, submitted to PRL

    Viscosities of Quark-Gluon Plasmas

    Full text link
    The quark and gluon viscosities are calculated in quark-gluon plasmas to leading orders in the coupling constant by including screening. For weakly interaction QCD and QED plasmas dynamical screening of transverse interactions and Debye screening of longitudinal interactions controls the infrared divergences. For strongly interacting plasmas other screening mechanisms taken from lattice calculations are employed. By solving the Boltzmann equation for quarks and gluons including screening the viscosity is calculated to leading orders in the coupling constant. The leading logarithmic order is calculated exactly by a full variational treatment. The next to leading orders are found to be very important for sizable coupling constants as those relevant for the transport properties relevant for quark-gluon plasmas created in relativistic heavy ion collisions and the early universe.Comment: 12 pages + 6 figures, report LBL-3492

    Perturbation Theory with a Variational Basis: the Generalized Gaussian Effective Potential

    Get PDF
    The perturbation theory with a variational basis is constructed and analyzed.The generalized Gaussian effective potential is introduced and evaluated up to the second order for selfinteracting scalar fields in one and two spatial dimensions. The problem of the renormalization of the mass is discussed in details. Thermal corrections are incorporated. The comparison between the finite temperature generalized Gaussian effective potential and the finite temperature effective potential is critically analyzed. The phenomenon of the restoration at high temperature of the symmetry broken at zero temperature is discussed.Comment: RevTex, 49 pages, 16 eps figure

    Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced glycation end-products (AGEs) and their receptor (RAGE) occur in dementia of the Alzheimer's type and diabetic microvascular disease. Accumulation of AGEs relates to risk factors for vascular dementia with ageing, including hypertension and diabetes. Cognitive dysfunction in vascular dementia may relate to microvascular disease resembling that in diabetes. We tested if, among people with cerebrovascular disease, (1) those with dementia have higher levels of neuronal and vascular AGEs and (2) if cognitive dysfunction depends on neuronal and/or vascular AGE levels.</p> <p>Methods</p> <p>Brain Sections from 25 cases of the OPTIMA (Oxford Project to Investigate Memory and Ageing) cohort, with varying degrees of cerebrovascular pathology and cognitive dysfunction (but only minimal Alzheimer type pathology) were immunostained for N<sup><it>Δ</it></sup>-(carboxymethyl)-lysine (CML), the most abundant AGE. The level of staining in vessels and neurons in the cortex, white matter and basal ganglia was compared to neuropsychological and other clinical measures.</p> <p>Results</p> <p>The probability of cortical neurons staining positive for CML was higher in cases with worse cognition (p = 0.01) or a history of hypertension (p = 0.028). Additionally, vascular CML staining related to cognitive impairment (p = 0.02) and a history of diabetes (p = 0.007). Neuronal CML staining in the basal ganglia related to a history of hypertension (p = 0.002).</p> <p>Conclusion</p> <p>CML staining in cortical neurons and cerebral vessels is related to the severity of cognitive impairment in people with cerebrovascular disease and only minimal Alzheimer pathology. These findings support the possibility that cerebral accumulation of AGEs may contribute to dementia in people with cerebrovascular disease.</p

    The Thermal Beta-Function in Yang-Mills Theory

    Full text link
    Previous calculations of the thermal beta-function in a hot Yang--Mills gas at the one--loop level have exposed problems with the gauge dependence and with the sign, which is opposite to what one would expect for asymptotic freedom. We show that inclusion of higher--loop effects through a static Braaten--Pisarski resummation is necessary to consistently obtain the leading term, but alters the results only quantitatively. The sign, in particular, remains the same. We also explore, by a crude parameterization, the effects a (non--perturbative) magnetic mass may have on these results.Comment: 16pp,latex + epsf.sty, Nordita-94/36

    Cluster analysis of protein array results via similarity of Gene Ontology annotation

    Get PDF
    BACKGROUND: With the advent of high-throughput proteomic experiments such as arrays of purified proteins comes the need to analyse sets of proteins as an ensemble, as opposed to the traditional one-protein-at-a-time approach. Although there are several publicly available tools that facilitate the analysis of protein sets, they do not display integrated results in an easily-interpreted image or do not allow the user to specify the proteins to be analysed. RESULTS: We developed a novel computational approach to analyse the annotation of sets of molecules. As proof of principle, we analysed two sets of proteins identified in published protein array screens. The distance between any two proteins was measured as the graph similarity between their Gene Ontology (GO) annotations. These distances were then clustered to highlight subsets of proteins sharing related GO annotation. In the first set of proteins found to bind small molecule inhibitors of rapamycin, we identified three subsets containing four or five proteins each that may help to elucidate how rapamycin affects cell growth whereas the original authors chose only one novel protein from the array results for further study. In a set of phosphoinositide-binding proteins, we identified subsets of proteins associated with different intracellular structures that were not highlighted by the analysis performed in the original publication. CONCLUSION: By determining the distances between annotations, our methodology reveals trends and enrichment of proteins of particular functions within high-throughput datasets at a higher sensitivity than perusal of end-point annotations. In an era of increasingly complex datasets, such tools will help in the formulation of new, testable hypotheses from high-throughput experimental data

    Network Clustering Revealed the Systemic Alterations of Mitochondrial Protein Expression

    Get PDF
    The mitochondrial protein repertoire varies depending on the cellular state. Protein component modifications caused by mitochondrial DNA (mtDNA) depletion are related to a wide range of human diseases; however, little is known about how nuclear-encoded mitochondrial proteins (mt proteome) changes under such dysfunctional states. In this study, we investigated the systemic alterations of mtDNA-depleted (ρ0) mitochondria by using network analysis of gene expression data. By modularizing the quantified proteomics data into protein functional networks, systemic properties of mitochondrial dysfunction were analyzed. We discovered that up-regulated and down-regulated proteins were organized into two predominant subnetworks that exhibited distinct biological processes. The down-regulated network modules are involved in typical mitochondrial functions, while up-regulated proteins are responsible for mtDNA repair and regulation of mt protein expression and transport. Furthermore, comparisons of proteome and transcriptome data revealed that ρ0 cells attempted to compensate for mtDNA depletion by modulating the coordinated expression/transport of mt proteins. Our results demonstrate that mt protein composition changed to remodel the functional organization of mitochondrial protein networks in response to dysfunctional cellular states. Human mt protein functional networks provide a framework for understanding how cells respond to mitochondrial dysfunctions
    • 

    corecore