16 research outputs found

    Characterization and kinetic analysis of a thermostable GH3 Ăź-glucosidase from Penicillium brasilianum

    No full text
    A GH3 beta-glucosidase (BGL) from Penicillium brasilianum was purified to homogeneity after cultivation on a cellulose and xylan rich medium. The BGL was identified in a genomic library, and it was successfully expressed in Aspergillus oryzae. The BGL had excellent stability at elevated temperatures with no loss in activity after 24 h of incubation at 60A degrees C at pH 4-6, and the BGL was shown to have significantly higher stability at these conditions in comparison to Novozym 188 and to other fungal GH3 BGLs reported in the literature. The BGL had significant lower affinity for cellobiose compared with the artificial substrate para-nitrophenyl-beta-d-glucopyranoside (pNP-Glc) and further, pronounced substrate inhibition using pNP-Glc. Kinetic studies demonstrated the high importance of using cellobiose as substrate and glucose as inhibitor to describe the inhibition kinetics of BGL taking place during cellulose hydrolysis. A novel assay was developed to characterize this glucose inhibition on cellobiose hydrolysis. The assay uses labelled glucose-C-13(6) as inhibitor and subsequent mass spectrometry analysis to quantify the hydrolysis rates

    Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor

    No full text
    Drugs that allosterically target the human calcium-sensing receptor (CaSR) have substantial therapeutic potential, but are currently limited. Given the absence of high-resolution structures of the CaSR, we combined mutagenesis with a novel analytical approach and molecular modeling to develop an “enriched” picture of structure-function requirements for interaction between Ca(2+)(o) and allosteric modulators within the CaSR's 7 transmembrane (7TM) domain. An extended cavity that accommodates multiple binding sites for structurally diverse ligands was identified. Phenylalkylamines bind to a site that overlaps with a putative Ca(2+)(o)-binding site and extends towards an extracellular vestibule. In contrast, the structurally and pharmacologically distinct AC-265347 binds deeper within the 7TM domains. Furthermore, distinct amino acid networks were found to mediate cooperativity by different modulators. These findings may facilitate the rational design of allosteric modulators with distinct and potentially pathway-biased pharmacological effects
    corecore