31,887 research outputs found
Energy dynamics in a simulation of LAPD turbulence
Energy dynamics calculations in a 3D fluid simulation of drift wave
turbulence in the linear Large Plasma Device (LAPD) [W. Gekelman et al., Rev.
Sci. Inst. 62, 2875 (1991)] illuminate processes that drive and dissipate the
turbulence. These calculations reveal that a nonlinear instability dominates
the injection of energy into the turbulence by overtaking the linear drift wave
instability that dominates when fluctuations about the equilibrium are small.
The nonlinear instability drives flute-like () density
fluctuations using free energy from the background density gradient. Through
nonlinear axial wavenumber transfer to fluctuations, the
nonlinear instability accesses the adiabatic response, which provides the
requisite energy transfer channel from density to potential fluctuations as
well as the phase shift that causes instability. The turbulence characteristics
in the simulations agree remarkably well with experiment. When the nonlinear
instability is artificially removed from the system through suppressing
modes, the turbulence develops a coherent frequency spectrum
which is inconsistent with experimental data
Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity
We apply the technique of quasi-adiabatic continuation to study systems with
continuous symmetries. We first derive a general form of Goldstone's theorem
applicable to gapped nonrelativistic systems with continuous symmetries. We
then show that for a fermionic system with a spin gap, it is possible to insert
-flux into a cylinder with only exponentially small change in the energy
of the system, a scenario which covers several physically interesting cases
such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA
The scalar complex potential and the Aharonov-Bohm effect
The Aharonov-Bohm effect is traditionally attributed to the effect of the
electromagnetic 4-potential , even in regions where both the electric field
and the magnetic field are zero. The AB effect
reveals that multiple-valued functions play a crucial role in the description
of an electromagnetic field. We argue that the quantity measured by AB
experiments is a difference in values of a multiple-valued complex function,
which we call a complex potential or {pre-potential. We show that any
electromagnetic field can be described by this pre-potential, and give an
explicit expression for the electromagnetic field tensor through this
potential. The pre-potential is a modification of the two scalar potential
functions.Comment: 10 pages 2 figure
Quantum Lattice Fluctuations and Luminescence in C_60
We consider luminescence in photo-excited neutral C_60 using the
Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the
luminescence we use a collective coordinate method where our collective
coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon
mode and extrapolates between the ground state "dimerisation" and the exciton
polaron. There is good agreement for the existing luminescence peak spacing and
fair agreement for the relative intensity. We predict the existence of further
peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn,
36.90+
Classical simulation of quantum many-body systems with a tree tensor network
We show how to efficiently simulate a quantum many-body system with tree
structure when its entanglement is bounded for any bipartite split along an
edge of the tree. This is achieved by expanding the {\em time-evolving block
decimation} simulation algorithm for time evolution from a one dimensional
lattice to a tree graph, while replacing a {\em matrix product state} with a
{\em tree tensor network}. As an application, we show that any one-way quantum
computation on a tree graph can be efficiently simulated with a classical
computer.Comment: 4 pages,7 figure
Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device
The properties of linear instabilities in the Large Plasma Device [W.
Gekelman et al., Rev. Sci. Inst., 62, 2875 (1991)] are studied both through
analytic calculations and solving numerically a system of linearized
collisional plasma fluid equations using the 3D fluid code BOUT [M. Umansky et
al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully
modified to treat cylindrical geometry. Instability drive from plasma pressure
gradients and flows is considered, focusing on resistive drift waves, the
Kelvin-Helmholtz and rotational interchange instabilities. A general linear
dispersion relation for partially ionized collisional plasmas including these
modes is derived and analyzed. For LAPD relevant profiles including strongly
driven flows it is found that all three modes can have comparable growth rates
and frequencies. Detailed comparison with solutions of the analytic dispersion
relation demonstrates that BOUT accurately reproduces all characteristics of
linear modes in this system.Comment: Published in Physics of Plasmas, 17, 102107 (2010
How Much Longer Will it Take? A Ten-year Review of the Implementation of United Nations General Assembly Resolutions 61/105, 64/72 and 66/68 on the Management of Bottom Fisheries in Areas Beyond National Jurisdiction
The United Nations General Assembly (UNGA) in 2002 adopted the first in a series of resolutions regarding the conservation of biodiversity in the deep sea. Prompted by seriousconcerns raised by scientists, non-governmental organizations (NGOs) and numerous States,these resolutions progressively committed States to act both individually and through regional fishery management organizations (RFMOs) to either manage bottom fisheries in areas beyond national jurisdiction to prevent significant adverse impacts on deep-sea species, ecosystems and biodiversity or else prohibit bottom fishing from taking place.Ten years have passed since the adoption of resolution 61/105 in 2006, calling on States to take a set of specific actions to manage bottom fisheries in areas beyond national jurisdiction to protect vulnerable marine ecosystems (VMEs) from the adverse impacts of bottom fishing and ensure the sustainability of deep-sea fish stocks. Despite the considerable progress by some RFMOs, there remain significant gaps in the implementation of key elements and commitments in the resolutions. The Deep Sea Conservation Coalition (DSCC) has prepared this report to assist the UNGA in its review in 2016 and to address the following question: How effectively have the resolutions been implemented
- …