2,958 research outputs found

    Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age

    Get PDF
    Retrospective histologic analyses of bone biopsies and of post mortem samples from normal persons of different age groups, and of bone biopsies of age- and sex-matched groups of patients with primary osteoporosis and aplastic anemia show characteristic age dependent as well as pathologic changes including atrophy of osseous trabeculae and of hematopoiesis, and changes in the sinusoidal and arterial capillary compartments. These results indicate the possible role of a microvascular defect in the pathogenesis of osteoporosis and aplastic anemia

    Partial survival and inelastic collapse for a randomly accelerated particle

    Full text link
    We present an exact derivation of the survival probability of a randomly accelerated particle subject to partial absorption at the origin. We determine the persistence exponent and the amplitude associated to the decay of the survival probability at large times. For the problem of inelastic reflection at the origin, with coefficient of restitution rr, we give a new derivation of the condition for inelastic collapse, r<rc=eπ/3r<r_c=e^{-\pi/\sqrt{3}}, and determine the persistence exponent exactly.Comment: 6 page

    CLIC Muon Sweeper Design

    Full text link
    There are several background sources which may affect the analysis of data and detector performans at the CLIC project. One of the important background source is halo muons, which are generated along the beam delivery system (BDS), for the detector performance. In order to reduce muon background, magnetized muon sweepers have been used as a shielding material that is already described in a previous study for CLIC [1]. The realistic muon sweeper has been designed with OPERA. The design parameters of muon sweeper have also been used to estimate muon background reduction with BDSIM Monte Carlo simulation code [2, 3].Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2-6 November 2015, 7 pages, 6 figure

    Conformal off-diagonal boundary density profiles on a semi-infinite strip

    Full text link
    The off-diagonal profile phi(v) associated with a local operator (order parameter or energy density) close to the boundary of a semi-infinite strip with width L is obtained at criticality using conformal methods. It involves the surface exponent x_phi^s and displays a simple universal behaviour which crosses over from surface finite-size scaling when v/L is held constant to corner finite-size scaling when v/L -> 0.Comment: 5 pages, 1 figure, IOP macros and eps

    Surface crossover exponent for branched polymers in two dimensions

    Full text link
    Transfer-matrix methods on finite-width strips with free boundary conditions are applied to lattice site animals, which provide a model for randomly branched polymers in a good solvent. By assigning a distinct fugacity to sites along the strip edges, critical properties at the special (adsorption) and ordinary transitions are assessed. The crossover exponent at the adsorption point is estimated as ϕ=0.505±0.015\phi = 0.505 \pm 0.015, consistent with recent predictions that ϕ=1/2\phi = 1/2 exactly for all space dimensionalities.Comment: 10 pages, LaTeX with Institute of Physics macros, to appear in Journal of Physics

    Average persistence in random walks

    Full text link
    We study the first passage time properties of an integrated Brownian curve both in homogeneous and disordered environments. In a disordered medium we relate the scaling properties of this center of mass persistence of a random walker to the average persistence, the latter being the probability P_pr(t) that the expectation value of the walker's position after time t has not returned to the initial value. The average persistence is then connected to the statistics of extreme events of homogeneous random walks which can be computed exactly for moderate system sizes. As a result we obtain a logarithmic dependence P_pr(t)~{ln(t)}^theta' with a new exponent theta'=0.191+/-0.002. We note on a complete correspondence between the average persistence of random walks and the magnetization autocorrelation function of the transverse-field Ising chain, in the homogeneous and disordered case.Comment: 6 pages LaTeX, 3 postscript figures include

    On surface properties of two-dimensional percolation clusters

    Full text link
    The two-dimensional site percolation problem is studied by transfer-matrix methods on finite-width strips with free boundary conditions. The relationship between correlation-length amplitudes and critical indices, predicted by conformal invariance, allows a very precise determination of the surface decay-of-correlations exponent, ηs=0.6664±0.0008\eta_s = 0.6664 \pm 0.0008, consistent with the analytical value ηs=2/3\eta_s = 2/3. It is found that a special transition does not occur in the case, corroborating earlier series results. At the ordinary transition, numerical estimates are consistent with the exact value ys=1y_s = -1 for the irrelevant exponent.Comment: 8 pages, LaTeX with Institute of Physics macros, to appear in Journal of Physics

    Surface Critical Behavior of Binary Alloys and Antiferromagnets: Dependence of the Universality Class on Surface Orientation

    Full text link
    The surface critical behavior of semi-infinite (a) binary alloys with a continuous order-disorder transition and (b) Ising antiferromagnets in the presence of a magnetic field is considered. In contrast to ferromagnets, the surface universality class of these systems depends on the orientation of the surface with respect to the crystal axes. There is ordinary and extraordinary surface critical behavior for orientations that preserve and break the two-sublattice symmetry, respectively. This is confirmed by transfer-matrix calculations for the two-dimensional antiferromagnet and other evidence.Comment: Final version that appeared in PRL, some minor stylistic changes and one corrected formula; 4 pp., twocolumn, REVTeX, 3 eps fig

    Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance

    Full text link
    Mesoscopic particles immersed in a critical fluid experience long-range Casimir forces due to critical fluctuations. Using field theoretical methods, we investigate the Casimir interaction between two spherical particles and between a single particle and a planar boundary of the fluid. We exploit the conformal symmetry at the critical point to map both cases onto a highly symmetric geometry where the fluid is bounded by two concentric spheres with radii R_- and R_+. In this geometry the singular part of the free energy F only depends upon the ratio R_-/R_+, and the stress tensor, which we use to calculate F, has a particularly simple form. Different boundary conditions (surface universality classes) are considered, which either break or preserve the order-parameter symmetry. We also consider profiles of thermodynamic densities in the presence of two spheres. Explicit results are presented for an ordinary critical point to leading order in epsilon=4-d and, in the case of preserved symmetry, for the Gaussian model in arbitrary spatial dimension d. Fundamental short-distance properties, such as profile behavior near a surface or the behavior if a sphere has a `small' radius, are discussed and verified. The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B 51, 13717 (1995

    Density Profiles in Random Quantum Spin Chains

    Full text link
    We consider random transverse-field Ising spin chains and study the magnetization and the energy-density profiles by numerically exact calculations in rather large finite systems (L128L\le 128). Using different boundary conditions (free, fixed and mixed) the numerical data collapse to scaling functions, which are very accurately described by simple analytic expressions. The average magnetization profiles satisfy the Fisher-de Gennes scaling conjecture and the corresponding scaling functions are indistinguishable from those predicted by conformal invariance.Comment: 4 pages RevTeX, 4 eps-figures include
    corecore