165 research outputs found

    Senior Recital: Lauren M. Avellino, flute

    Get PDF

    Overtourism: Its meaning and its impact on the host country

    Get PDF
    This report relates to a debate held at the University of Malta on the theme of overtourism. Following brief background information on overtourism, the report provides an account of the comments of the panel speakers followed by interventions by the audience, who were mostly students and academic

    Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration

    Get PDF
    Journal ArticleAfter peripheral nerve injury, macrophages infiltrate the degenerating nerve and participate in the removal of myelin and axonal debris, in Schwann cell proliferation, and in axonal regeneration. In vitro studies have demonstrated the role serum complement plays in both macrophage invasion and activation during Wallerian degeneration of peripheral nerve. To determine its role in vivo, we depleted serum complement for 1 week in adult Lewis rats, using intravenously administered cobra venom factor. At 1 d after complement depletion the right sciatic nerve was crushed, and the animals were sacrificed 4 and 7 d later. Macrophage identification with ED-1 and CD11a monoclonal antibodies revealed a significant reduction in their recruitment into distal degenerating nerve in complement-depleted animals. Complement depletion also decreased macrophage activation, as indicated by their failure to become large and multivacuolated and their reduced capacity to clear myelin, which was evident at both light and electron microscopic levels. Axonal regeneration was delayed in complement-depleted animals. These findings support a role for serum complement in both the recruitment and activation of macrophages during peripheral nerve degeneration as well as a role for macrophages in promoting axonal regeneration. Key words: complement; macrophage; peripheral nerve;Wallerian degeneration; regeneration; axon

    Quantum Communication in Spin Systems With Long-Range Interactions

    Full text link
    We calculate the fidelity of transmission of a single qubit between distant sites on semi-infinite and finite chains of spins coupled via the magnetic dipole interaction. We show that such systems often perform better than their Heisenberg nearest-neighbour coupled counterparts, and that fidelities closely approaching unity can be attained between the ends of finite chains without any special engineering of the system, although state transfer becomes slow in long chains. We discuss possible optimization methods, and find that, for any length, the best compromise between the quality and the speed of the communication is obtained in a nearly uniform chain of 4 spins.Comment: 15 pages, 8 eps figures, updated references, corrected text and corrected figs. 1, 4 and

    MyDi application: Towards automatic activity annotation of young patients with Type 1 diabetes

    Get PDF
    Type I diabetes mellitus (T1DM) is a widespread metabolic disorder characterized by pancreatic insufficiency. People with T1DM require: a lifelong insulin injection, to constantly monitor glycemia and to take note of their activities. This continuous follow-up, especially at a very young age, may be challenging. Adolescents with T1DM may develop anxiety symptoms and depression which can lead to the loss of glycemic control. An assistive technology that automatizes the activity monitoring process could support these young patient in managing T1DM. The aim of this work is to present the MyDi framework which integrates a smart glycemic diary (for Android users), to automatically record and store patient's activity via pictures and a deep-learning (DL)-based technology able to classify the activity performed by the patients (i.e., meal and sport) via picture analysis. The proposed approach was tested on two different datasets, the Insta-Dataset with 3498 pictures (also used for training and validating the DL model) and the MyDi-Dataset with 126 pictures, achieving very encouraging results in both cases (Preci= 1.0, Reci= 1.0, f1i= 1.0 with i E C:[meal, sport]) prompting the possibility of translating this application in the T1DM monitoring process

    Entanglement Transfer via XXZ Heisenberg chain with DM Interaction

    Full text link
    The role of spin-orbit interaction, arises from the Dzyaloshinski-Moriya anisotropic antisymmetric interaction, on the entanglement transfer via an antiferromagnetic XXZ Heisenberg chain is investigated. From symmetrical point of view, the XXZ Hamiltonian with Dzyaloshinski-Moriya interaction can be replaced by a modified XXZ Hamiltonian which is defined by a new exchange coupling constant and rotated Pauli operators. The modified coupling constant and the angle of rotations are depend on the strength of Dzyaloshinski-Moriya interaction. In this paper we study the dynamical behavior of the entanglement propagation through a system which is consist of a pair of maximally entangled spins coupled to one end of the chain. The calculations are performed for the ground state and the thermal state of the chain, separately. In both cases the presence of this anisotropic interaction make our channel more efficient, such that the speed of transmission and the amount of the entanglement are improved as this interaction is switched on. We show that for large values of the strength of this interaction a large family of XXZ chains becomes efficient quantum channels, for whole values of an isotropy parameter in the region −2≤Δ≤2-2 \leq \Delta \leq 2.Comment: 21 pages, 9 figure
    • …
    corecore