14 research outputs found

    A new class of accelerated kinetic Monte Carlo algorithms

    Get PDF
    Kinetic (aka dynamic) Monte Carlo (KMC) is a powerful method for numerical simulations of time dependent evolution applied in a wide range of contexts including biology, chemistry, physics, nuclear sciences, financial engineering, etc. Generally, in a KMC the time evolution takes place one event at a time, where the sequence of events and the time intervals between them are selected (or sampled) using random numbers. While details of the method implementation vary depending on the model and context, there exist certain common issues that limit KMC applicability in almost all applications. Among such is the notorious 'flicker problem' where the same states of the systems are repeatedly visited but otherwise no essential evolution is observed. In its simplest form the flicker problem arises when two states are connected to each other by transitions whose rates far exceed the rates of all other transitions out of the same two states. In such cases, the model will endlessly hop between the two states otherwise producing no meaningful evolution. In most situation of practical interest, the trapping cluster includes more than two states making the flicker somewhat more difficult to detect and to deal with. Several methods have been proposed to overcome or mitigate the flicker problem, exactly [1-3] or approximately [4,5]. Of the exact methods, the one proposed by Novotny [1] is perhaps most relevant to our research. Novotny formulates the problem of escaping from a trapping cluster as a Markov system with absorbing states. Given an initial state inside the cluster, it is in principle possible to solve the Master Equation for the time dependent probabilities to find the walker in a given state (transient or absorbing) of the cluster at any time in the future. Novotny then proceeds to demonstrate implementation of his general method to trapping clusters containing the initial state plus one or two transient states and all of their absorbing states. Similar methods have been subsequently proposed in [refs] but applied in a different context. The most serious deficiency of the earlier methods is that size of the trapping cluster size is fixed and often too small to bring substantial simulation speedup. Furthermore, the overhead associated with solving for the probability distribution on the trapping cluster sometimes makes such simulations less efficient than the standard KMC. Here we report on a general and exact accelerated kinetic Monte Carlo algorithm generally applicable to arbitrary Markov models1. Two different implementations are attempted both based on incremental expansion of trapping sub-set of Markov states: (1) numerical solution of the Master Equation with absorbing states and (2) incremental graph reduction followed by randomization. Of the two implementations, the 2nd one performs better allowing, for the first time, to overcome trapping basins spanning several million Markov states. The new method is used for simulations of anomalous diffusion on a 2D substrate and of the kinetics of diffusive 1st order phase transformations in binary alloys. Depending on temperature and (alloy) super-saturation conditions, speedups of 3 to 7 orders of magnitude are demonstrated, with no compromise of simulation accuracy

    Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?

    Get PDF
    In the waste recycling Monte Carlo (WRMC) algorithm,(1)multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA. © 2011 American Chemical Society

    “Biological Geometry Perception”: Visual Discrimination of Eccentricity Is Related to Individual Motor Preferences

    Get PDF
    In the continuum between a stroke and a circle including all possible ellipses, some eccentricities seem more “biologically preferred” than others by the motor system, probably because they imply less demanding coordination patterns. Based on the idea that biological motion perception relies on knowledge of the laws that govern the motor system, we investigated whether motorically preferential and non-preferential eccentricities are visually discriminated differently. In contrast with previous studies that were interested in the effect of kinematic/time features of movements on their visual perception, we focused on geometric/spatial features, and therefore used a static visual display.In a dual-task paradigm, participants visually discriminated 13 static ellipses of various eccentricities while performing a finger-thumb opposition sequence with either the dominant or the non-dominant hand. Our assumption was that because the movements used to trace ellipses are strongly lateralized, a motor task performed with the dominant hand should affect the simultaneous visual discrimination more strongly. We found that visual discrimination was not affected when the motor task was performed by the non-dominant hand. Conversely, it was impaired when the motor task was performed with the dominant hand, but only for the ellipses that we defined as preferred by the motor system, based on an assessment of individual preferences during an independent graphomotor task.Visual discrimination of ellipses depends on the state of the motor neural networks controlling the dominant hand, but only when their eccentricity is “biologically preferred”. Importantly, this effect emerges on the basis of a static display, suggesting that what we call “biological geometry”, i.e., geometric features resulting from preferential movements is relevant information for the visual processing of bidimensional shapes

    Modeling Microstructure and Irradiation Effects

    Full text link

    Audio-Motor Synchronization: The Effect of Mapping Between Kinematics and Acoustic Cues on Geometric Motor Features

    No full text
    International audienceThis paper presents an experiment dealing with the sensorimotor relation between auditory perception and graphical movements. Subjects were asked to synchronize their gestures with synthetic friction sounds. Some geometrical and dynamical parameters of the motor productions are analyzed according to the different mappings. This experiment provides a formal framework for a wider study which aims to evaluate the relation between audition, vision and gestures
    corecore