5,272 research outputs found
Is the Riemann zeta function in a short interval a 1-RSB spin glass ?
Fyodorov, Hiary & Keating established an intriguing connection between the
maxima of log-correlated processes and the ones of the Riemann zeta function on
a short interval of the critical line. In particular, they suggest that the
analogue of the free energy of the Riemann zeta function is identical to the
one of the Random Energy Model in spin glasses. In this paper, the connection
between spin glasses and the Riemann zeta function is explored further. We
study a random model of the Riemann zeta function and show that its two-overlap
distribution corresponds to the one of a one-step replica symmetry breaking
(1-RSB) spin glass. This provides evidence that the local maxima of the zeta
function are strongly clustered.Comment: 20 pages, 1 figure, Minor corrections, References update
Fluctuation Bounds For Interface Free Energies in Spin Glasses
We consider the free energy difference restricted to a finite volume for
certain pairs of incongruent thermodynamic states (if they exist) in the
Edwards-Anderson Ising spin glass at nonzero temperature. We prove that the
variance of this quantity with respect to the couplings grows proportionally to
the volume in any dimension greater than or equal to two. As an illustration of
potential applications, we use this result to restrict the possible structure
of Gibbs states in two dimensions.Comment: 19 pages, 0 figure
Spin Glass Computations and Ruelle's Probability Cascades
We study the Parisi functional, appearing in the Parisi formula for the
pressure of the SK model, as a functional on Ruelle's Probability Cascades
(RPC). Computation techniques for the RPC formulation of the functional are
developed. They are used to derive continuity and monotonicity properties of
the functional retrieving a theorem of Guerra. We also detail the connection
between the Aizenman-Sims-Starr variational principle and the Parisi formula.
As a final application of the techniques, we rederive the Almeida-Thouless line
in the spirit of Toninelli but relying on the RPC structure.Comment: 20 page
Stochastic Stability: a Review and Some Perspectives
A review of the stochastic stability property for the Gaussian spin glass
models is presented and some perspectives discussed.Comment: 12 pages, typos corrected, references added. To appear in Journal of
Statistical Physics, Special Issue for the 100th Statistical Mechanics
Meetin
Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane
We consider the Edwards-Anderson Ising spin glass model on the half-plane with zero external field and a wide range of choices, including
mean zero Gaussian, for the common distribution of the collection J of i.i.d.
nearest neighbor couplings. The infinite-volume joint distribution
of couplings J and ground state pairs with periodic
(respectively, free) boundary conditions in the horizontal (respectively,
vertical) coordinate is shown to exist without need for subsequence limits. Our
main result is that for almost every J, the conditional distribution
is supported on a single ground state pair.Comment: 20 pages, 3 figure
Short-range spin glasses and Random Overlap Structures
Properties of Random Overlap Structures (ROSt)'s constructed from the
Edwards-Anderson (EA) Spin Glass model on with periodic boundary
conditions are studied. ROSt's are random matrices whose entries
are the overlaps of spin configurations sampled from the Gibbs measure. Since
the ROSt construction is the same for mean-field models (like the
Sherrington-Kirkpatrick model) as for short-range ones (like the EA model), the
setup is a good common ground to study the effect of dimensionality on the
properties of the Gibbs measure. In this spirit, it is shown, using translation
invariance, that the ROSt of the EA model possesses a local stability that is
stronger than stochastic stability, a property known to hold at almost all
temperatures in many spin glass models with Gaussian couplings. This fact is
used to prove stochastic stability for the EA spin glass at all temperatures
and for a wide range of coupling distributions. On the way, a theorem of Newman
and Stein about the pure state decomposition of the EA model is recovered and
extended.Comment: 27 page
A unified stability property in spin glasses
Gibbs' measures in the Sherrington-Kirkpatrick type models satisfy two
asymptotic stability properties, the Aizenman-Contucci stochastic stability and
the Ghirlanda-Guerra identities, which play a fundamental role in our current
understanding of these models. In this paper we show that one can combine these
two properties very naturally into one unified stability property
- …