425 research outputs found
Revisiting Rotational Perturbations and the Microwave Background
We consider general-relativistic rotational perturbations in homogeneous and
isotropic Friedman - Robertson - Walker (FRW) cosmologies. Taking linear
perturbations of FRW models, the general solution of the field equations
contains tensorial, vectorial and scalar functions. The vectorial terms are in
connection with rotations in the given model and due to the Sachs - Wolfe
effect they produce contributions to the temperature fluctuations of the cosmic
microwave background radiation (CMBR). In present paper we obtain the analytic
time dependence of these contributions in a spatially flat, FRW model with
pressureless ideal fluid, in the presence and the absence of a cosmological
constant. We find that the solution can be separated into an integrable and a
non-integrable part as is the situation in the case of scalar perturbations.
Analyzing the solutions and using the results of present observations we
estimate the order of magnitude of the angular velocity corresponding to the
rotation tensor at the time of decoupling and today.Comment: accepted for publication in Int. J. Mod. Phys.
Vector modes generated by primordial density fluctuations
While vector modes are usually ignored in cosmology since they are not
produced during inflation they are inevitably produced from the interaction of
density fluctuations of differing wavelengths. This effect may be calculated
via a second-order perturbative expansion. We investigate this effect during
the radiation era. We discuss the generation mechanism by investigating two
scalar modes interacting, and we calculate the power of vector modes generated
by a power-law spectrum of density perturbations on all scales.Comment: 10 pages, 2 figures, minor changes in main text and new appendix
added to match the accepted version for Physical Review D publicatio
Shock waves in superconducting cosmic strings: growth of current
Intrinsic equations of motion of superconducting cosmic string may admit
solutions in the shock-wave form that implies discontinuity of the current term
\chi. The hypersurface of discontinuity propagates at finite velocity
determined by finite increment \Delta \chi =\chi_+ -\chi_-. The current
increases \chi_+>\chi_- in stable shocks but transition between spacelike (\chi
>0) and timelike (\chi<0) currents is impossible.Comment: 13 pages, 3 figure
Habitat fragmentation and anthropogenic factors affect wildcat Felis silvestris silvestris occupancy and detectability on Mt Etna
Knowledge of patterns of occupancy is crucial for planning sound biological management and for identifying areas which require paramount conservation attention. The European wildcat Felis silvestris is an elusive carnivore and is classified as ‘least concern’ on the IUCN red list, but with a decreasing population trend in some areas. Sicily hosts a peculiar wildcat population, which deserves conservation and management actions, due to its isolation from the mainland. Patterns of occupancy for wildcats are unknown in Italy, and especially in Sicily. We aimed to identify which ecological drivers determined wildcat occurrence on Mt Etna and to provide conservation actions to promote the wildcats’ long-term survival in this peculiar environment. The genetic identity of the wildcat population was confirmed through a scat-collection which detected 22 different wildcat individuals. We analysed wildcat detections collected by 91 cameras using an occupancy frame work to assess which covariates influenced the detection (p) and the occupancy (ψ) estimates. We recorded 70 detections of the target species from 38 cameras within 3377 trap-days. Wildcat detection was positively influenced by the distance to the major paved roads and negatively affected by the presence of humans. Wildcat occupancy was positively associated with mixed forest and negatively influenced by pine forest, fragmentation of mixed forest and altitude. A spatially explicit predicted occupancy map, validated using an independent dataset of wildcat presence records, showed that higher occupancy estimates were scattered, mainly located on the north face and at lower altitude. Habitat fragmentation has been claimed as a significant threat for the wildcat and this is the first study that has ascertained this as a limiting factor for wildcat occurrence. Conservation actions should promote interconnectivity between areas with high predicted wildcat occupancy while minimising the loss of habitat
Generalised relativistic Ohm's laws, extended gauge transformations and magnetic linking
Generalisations of the relativistic ideal Ohm's law are presented that
include specific dynamical features of the current carrying particles in a
plasma. Cases of interest for space and laboratory plasmas are identified where
these generalisations allow for the definition of generalised electromagnetic
fields that transform under a Lorentz boost in the same way as the real
electromagnetic fields and that obey the same set of homogeneous Maxwell's
equations
New Measure of the Dissipation Region in Collisionless Magnetic Reconnection
A new measure to identify a small-scale dissipation region in collisionless
magnetic reconnection is proposed. The energy transfer from the electromagnetic
field to plasmas in the electron's rest frame is formulated as a
Lorentz-invariant scalar quantity. The measure is tested by two-dimensional
particle-in-cell simulations in typical configurations: symmetric and
asymmetric reconnection, with and without the guide field. The innermost region
surrounding the reconnection site is accurately located in all cases. We
further discuss implications for nonideal MHD dissipation
Relativistic MHD Simulations of Jets with Toroidal Magnetic Fields
This paper presents an application of the recent relativistic HLLC
approximate Riemann solver by Mignone & Bodo to magnetized flows with vanishing
normal component of the magnetic field.
The numerical scheme is validated in two dimensions by investigating the
propagation of axisymmetric jets with toroidal magnetic fields.
The selected jet models show that the HLLC solver yields sharper resolution
of contact and shear waves and better convergence properties over the
traditional HLL approach.Comment: 12 pages, 5 figure
General Relativistic effects on the conversion of nuclear to two-flavour quark matter in compact stars
We investigate the General Relativistic (GR) effects on the conversion from
nuclear to two-flavour quark matter in compact stars, both static as well as
rotating. We find that GR effects lead to qualitative differences in rotating
stars, indicating the inadequacy of non-relativistic (NR) or even Special
Relativistic (SR) treatments for these cases.Comment: 4 pages, 4 figure
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
In Newtonian and relativistic hydrodynamics the Riemann problem consists of
calculating the evolution of a fluid which is initially characterized by two
states having different values of uniform rest-mass density, pressure and
velocity. When the fluid is allowed to relax, one of three possible
wave-patterns is produced, corresponding to the propagation in opposite
directions of two nonlinear hydrodynamical waves. New effects emerge in a
special relativistic Riemann problem when velocities tangential to the initial
discontinuity surface are present. We show that a smooth transition from one
wave-pattern to another can be produced by varying the initial tangential
velocities while otherwise maintaining the initial states unmodified. These
special relativistic effects are produced by the coupling through the
relativistic Lorentz factors and do not have a Newtonian counterpart.Comment: 4 pages, 5 figure
- …