1,108 research outputs found

    Possible singlet to triplet pairing transition in NaxCoO2 H2O

    Full text link
    We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of Hc2(T) in a weak field regime. In order to explain this result we have derived and solved Gor'kov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.Comment: 6 pages, 5 figures, revte

    Upper critical field for cobalt oxide superconductors

    Get PDF
    Motivated by the recent discovery of the cobalt oxide superconductors, we calculate the temperature dependence of the upper critical field on a triangular lattice. Using the lattice version of the Gor'kov equations we investigate how the applied magnetic field affects singlet and triplet types of superconductivity. We show that in a wide range of model parameters not only Zeeman coupling, but also the diamagnetic pair breaking mechanism favors the triplet pairing. In the cobalt oxide superconductors the symmetry of the order parameter remains an open problem and both singlet and triplet superconductivity should be taken into account. We show that in such a case, an external magnetic field may induce a transition from singlet to triplet superconductivity. We discuss experimental results which may confirm this tempting hypothesis

    Pressure-induced Jahn-Teller switch in the homoleptic hybrid perovskite [(CH3)(2)NH2]Cu(HCOO)(3): orbital reordering by unconventional degrees of freedom

    Get PDF
    Through in situ, high-pressure X-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct from previously reported Jahn–Teller switching in coordination polymers, which required at least two different ligands that crystallize in a reverse spectrochemical series. We show that the orbital reordering phase transition in [(CH3)2NH2]Cu(HCOO)3 is instead primarily driven by unconventional octahedral tilts and shifts in the framework, and/or a reconfiguration of A-site cation ordering. These structural instabilities are unique to the coordination polymer perovskites, and may form the basis for undiscovered orbital reorientation phenomena in this broad family of materials

    Metabolic Profiles Associated With Metformin Efficacy in Cancer

    Get PDF
    Metformin is one of the most commonly prescribed medications for the treatment of type 2 diabetes. Numerous reports have suggested potential anti-cancerous and cancer preventive properties of metformin, although these findings vary depending on the intrinsic properties of the tumor, as well as the systemic physiology of patients. These intriguing studies have led to a renewed interest in metformin use in the oncology setting, and fueled research to unveil its elusive mode of action. It is now appreciated that metformin inhibits complex I of the electron transport chain in mitochondria, causing bioenergetic stress in cancer cells, and rendering them dependent on glycolysis for ATP production. Understanding the mode of action of metformin and the consequences of its use on cancer cell bioenergetics permits the identification of cancer types most susceptible to metformin action. Such knowledge may also shed light on the varying results to metformin usage that have been observed in clinical trials. In this review, we discuss metabolic profiles of cancer cells that are associated with metformin sensitivity, and rationalize combinatorial treatment options. We use the concept of bioenergetic flexibility, which has recently emerged in the field of cancer cell metabolism, to further understand metabolic rearrangements that occur upon metformin treatment. Finally, we advance the notion that metabolic fitness of cancer cells increases during progression to metastatic disease and the emergence of therapeutic resistance. As a result, sophisticated combinatorial approaches that prevent metabolic compensatory mechanisms will be required to effectively manage metastatic disease

    Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

    Get PDF
    Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n,) cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.Séptimo Programa Marco de la Comunidad Europea de la Energía Atómica (Euratom)-Proyecto CHANDA (No. 605203)Narodowe Centrum Nauki (NCN)-UMO-2012/04/M/ST2/00700-UMO-2016/22/M/ST2/00183Croatian Science Foundation-HRZZ 168
    corecore