4,998 research outputs found

    Parent-Child Home Training Project: Taking a Closer Look

    Get PDF

    Handling employee problems

    Get PDF
    The most effective means of handling employee problems is to recognize and eliminate their probable cause before they arise. The authors of other papers included in these proceedings have provided guidance for avoiding manager/employee problems on a daily basis. If the conditions they discuss are monitored, there should be little need for "handling employee problems." In order to identify a problem, a supervisor must know and be sensitive to employees' needs as well as have a comprehensive view of organizational goals. The way in which each employee's role fits into the overall plan of service should be well defined. With this information, an insightful manager can identify both real and potential problems and deal with them appropriately.published or submitted for publicatio

    SO(10) and Large nu_mu - nu_tau Mixing

    Full text link
    A general approach to understanding the large mixing seen in atmospheric neutrinos is explained, as well as a highly predictive SO(10) model which implements this approach. It is also seen how bimaximal mixing naturally arises in this scheme. (Talk presented at NNN99, SUNY Stony Brook, Sept. 22-26, 1999)Comment: 10 pages, LaTe

    Net Baryon Fluctuations from a Crossover Equation of State

    Full text link
    We have constructed an equation of state which smoothly interpolates between an excluded volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR collaboration in a beam energy scan at the Relativistic Heavy Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.Comment: 5 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1506.0340

    Matching Excluded Volume Hadron Resonance Gas Models and Perturbative QCD to Lattice Calculations

    Full text link
    We match three hadronic equations of state at low energy densities to a perturbatively computed equation of state of quarks and gluons at high energy densities. One of them includes all known hadrons treated as point particles, which approximates attractive interactions among hadrons. The other two include, in addition, repulsive interactions in the form of excluded volumes occupied by the hadrons. A switching function is employed to make the crossover transition from one phase to another without introducing a thermodynamic phase transition. A chi-square fit to accurate lattice calculations with temperature 100<T<1000100 < T < 1000 MeV determines the parameters. These parameters quantify the behavior of the QCD running gauge coupling and the hard core radius of protons and neutrons, which turns out to be 0.62±0.040.62 \pm 0.04 fm. The most physically reasonable models include the excluded volume effect. Not only do they include the effects of attractive and repulsive interactions among hadrons, but they also achieve better agreement with lattice QCD calculations of the equation of state. The equations of state constructed in this paper do not result in a phase transition, at least not for the temperatures and baryon chemical potentials investigated. It remains to be seen how well these equations of state will represent experimental data on high energy heavy ion collisions when implemented in hydrodynamic simulations.Comment: 19 pages, 9 figure

    Explicit SO(10) Supersymmetric Grand Unified Model

    Get PDF
    A complete set of Higgs and matter superfields is introduced with well-defined SO(10) properties and U(1) \times Z_2 \times Z_2 family charges from which the Higgs and Yukawa superpotentials are constructed. The Higgs fields solve the doublet-triplet splitting problem, while the structures of the four Dirac fermion mass matrices obtained involve just six effective Yukawa operators. The right-handed Majorana matrix, M_R, arises from one Higgs field coupling to several pairs of superheavy conjugate neutrino singlets. In terms of 10 input parameters to the mass matrices, the model accurately yields the 20 masses and mixings of the lightest quarks and leptons, as well as the masses of the 3 heavy right-handed neutrinos. The bimaximal atmospheric and solar neutrino vacuum solutions are favored in this simplest version with a moderate hierarchy in M_R. The large mixing angle MSW solution is obtainable, on the other hand, with a considerably larger hierarchy in M_R which is also necessary to obtain baryogenesis through the leptogenesis mechanism.Comment: 11 pages including 4 figures, contribution to NEUTRINO 2000 and talk presented at SUSY2
    corecore