1,196 research outputs found
Radiation from hot bare strange stars
We present the results of numerical simulations of stationary, spherically
outflowing, pair winds, with total luminosities of L=10^{35}- 10^{42} ergs/s.
These results have direct relevance to the emission from hot, bare, strange
stars, which are thought to be powerful sources of electron-positron pairs
created by the Coulomb barrier at the quark surface. The spectra of emergent
photons and pairs are calculated. For L > 2x10^{35} erg/s, photons dominate the
emerging emission. As L increases from 10^{35} to 10^{42} ergs/s, the mean
photon energy decreases from ~ 400-500 keV to 40 keV, while the spectrum
changes in shape from a wide annihilation line to being nearly blackbody with a
high energy (> 100 keV) tail. Such a correlation of the photon spectrum with
the luminosity, together with the fact that super-Eddington luminosities can be
achieved, might be a good observational signature of hot, bare, strange stars.Comment: 4 pages, 4 figures, Accepted in MNRAS, includes minor correction
Pair Winds in Schwarzschild Spacetime with Application to Strange Stars
We present the results of numerical simulations of stationary, spherically
outflowing, electron-positron pair winds, with total luminosities in the range
10^{34}--10^{42} ergs/s. In the concrete example described here, the wind
injection source is a hot, bare, strange star, predicted to be a powerful
source of pairs created by the Coulomb barrier at the quark surface. We find
that photons dominate in the emerging emission, and the emerging photon
spectrum is rather hard and differs substantially from the thermal spectrum
expected from a neutron star with the same luminosity. This might help
distinguish the putative bare strange stars from neutron stars.Comment: 3 pages, 2 figures, Invited talk at 11th Marcel Grossmann Meeting,
Berlin, July 200
Model of separated form factors for unilamellar vesicles
New model of separated form factors is proposed for the evaluation of
small-angle neutron scattering curves from large unilamellar vesicles. The
validity of the model was checked by comparison to the model of hollow sphere.
The model of separated form factors and hollow sphere model give reasonable
agreement in the evaluation of vesicle parameters.Comment: LaTeX: 3 pages, 1 figure, 14 references; submitted to Applied Physics
Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry
A resonant enhancement of the neutron standing waves is proposed to use in
order to increase the magnetic neutron scattering from a
"superconductor/ferromagnet"(S/F) bilayer. The model calculations show that
usage of this effect allows to increase the magnetic scattering intensity by
factor of hundreds. Aspects related to the growth procedure (order of
deposition, roughness of the layers etc) as well as experimental conditions
(resolution, polarization of the neutron beam, background etc) are also
discussed.
Collected experimental data for the S/F heterostructure
Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold
amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports.
23 pages, 5 figure
Convergence Acceleration Techniques
This work describes numerical methods that are useful in many areas: examples
include statistical modelling (bioinformatics, computational biology),
theoretical physics, and even pure mathematics. The methods are primarily
useful for the acceleration of slowly convergent and the summation of divergent
series that are ubiquitous in relevant applications. The computing time is
reduced in many cases by orders of magnitude.Comment: 6 pages, LaTeX; provides an easy-to-understand introduction to the
field of convergence acceleratio
- …