729 research outputs found

    Muon anomalous magnetic moment due to the brane-stretching effect

    Full text link
    We investigate the contribution of extra dimensions to the muon anomalous magnetic moment by using an ADD-type 6-dimensional model. This approach analyzes the extent of the influence of classical brane fluctuations on the magnetic moment. When we consider that the brane fluctuations are static in time, they add new potential terms to the Schr{\"o}dinger equation through the induced vierbein. This paper shows that the brane fluctuation is responsible for the brane-stretching effect. This effect would be capable of reproducing the appropriate order for recent Brookhaven National Laboratory measurements of the muon (g-2) deviation.Comment: 17 pages, 1 figure, minor changed, accepted for Phys. Rev.

    Gauss-Bonnet gravity, brane world models, and non-minimal coupling

    Get PDF
    We study the case of brane world models with an additional Gauss-Bonnet term in the presence of a bulk scalar field which interacts non-minimally with gravity, via a possible interaction term of the form −1/2ξRϕ2-1/2 \xi R \phi^2. The Einstein equations and the junction conditions on the brane are formulated, in the case of the bulk scalar field. Static solutions of this model are obtained by solving numerically the Einstein equations with the appropriate boundary conditions on the brane. Finally, we present graphically and comment these solutions for several values of the free parameters of the model.Comment: 13 pages,4 figures, published versio

    Gravitational Localization of Matters in 6D

    Full text link
    We present a new 3-brane solution to Einstein's equations in (1+5)-spacetime with a negative bulk cosmological constant. This solution is a stringlike defect solution with decreasing scale function approaching a finite non-zero value in the radial infinity. It is shown that all local fields are localized on the brane only through the gravitational interaction.Comment: 7 pages; added reference

    Matter localization and resonant deconfinement in a two-sheeted spacetime

    Get PDF
    In recent papers, a model of a two-sheeted spacetime M4XZ2 was introduced and the quantum dynamics of massive fermions was studied in this framework. In the present study, we show that the physical predictions of the model are perfectly consistent with observations and most important, it can solve the puzzling problem of the four-dimensional localization of the fermion species in multidimensional spacetimes. It is demonstrated that fermion localization on the sheets arises from the combination of the discrete bulk structure and environmental interactions. The mechanism described in this paper can be seen as an alternative to the domain wall localization arising in continuous five dimensional spacetimes. Although tightly constrained, motions between the sheets are, however, not completely prohibited. As an illustration, a resonant mechanism through which fermion oscillations between the sheets might occur is described.Comment: 9 pages, 1 figure. Published version. Accepted for publication in Int. J. of Modern Physics

    Graviton localization and Newton's law for brane models with a non-minimally coupled bulk scalar field

    Full text link
    Brane world models with a non-minimally coupled bulk scalar field have been studied recently. In this paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we show that the corresponding spectrum includes a localized zero mode which strongly depends on the profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form, we solve the linearized Einstein equations, for a point-like mass source on the brane, by using the brane bending formalism. We see that general relativity on the brane is recovered only if we impose restrictions on the parameter space of the models under consideration.Comment: 17 pages, revised versio

    Cross-participant modelling based on joint or disjoint feature selection: an fMRI conceptual decoding study

    Get PDF
    Multivariate classification techniques have proven to be powerful tools for distinguishing experimental conditions in single sessions of functional magnetic resonance imaging (fMRI) data. But they are vulnerable to a considerable penalty in classification accuracy when applied across sessions or participants, calling into question the degree to which fine-grained encodings are shared across subjects. Here, we introduce joint learning techniques, where feature selection is carried out using a held-out subset of a target dataset, before training a linear classifier on a source dataset. Single trials of functional MRI data from a covert property generation task are classified with regularized regression techniques to predict the semantic class of stimuli. With our selection techniques (joint ranking feature selection (JRFS) and disjoint feature selection (DJFS)), classification performance during cross-session prediction improved greatly, relative to feature selection on the source session data only. Compared with JRFS, DJFS showed significant improvements for cross-participant classification. And when using a groupwise training, DJFS approached the accuracies seen for prediction across different sessions from the same participant. Comparing several feature selection strategies, we found that a simple univariate ANOVA selection technique or a minimal searchlight (one voxel in size) is appropriate, compared with larger searchlights

    Non-topological gravitating defects in five-dimensional anti-de Sitter space

    Get PDF
    A class of five-dimensional warped solutions is presented. The geometry is everywhere regular and tends to five-dimensional anti-de Sitter space for large absolute values of the bulk coordinate. The physical features of the solutions change depending on the value of an integer parameter. In particular, a set of solutions describes generalized gravitating kinks where the scalar field interpolates between two different minima of the potential. The other category of solutions describes instead gravitating defects where the scalar profile is always finite and reaches the same constant asymptote both for positive and negative values of the bulk coordinate. In this sense the profiles are non-topological. The physical features of the zero modes are discussed.Comment: 9 pages, 4 figure

    Metastable gravity on classical defects

    Full text link
    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the Dominant Energy Condition for codimension Nc = 2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension Nc > 2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasi-localized gravity.Comment: 10 pages, 3 figures, uses RevTeX, typos corrected, matches published versio

    Generalized Chaplygin gas as geometrical dark energy

    Full text link
    The generalized Chaplygin gas provides an interesting candidate for the present accelerated expansion of the universe. We explore a geometrical explanation for the generalized Chaplygin gas within the context of brane world theories where matter fields are confined to the brane by means of the action of a confining potential. We obtain the modified Friedmann equations, deceleration parameter and age of the universe in this scenario and show that they are consistent with the present observational data.Comment: 11 pages, 3 figures, to appear in PR

    Chaplygin gas dominated anisotropic brane world cosmological models

    Get PDF
    We present exact solutions of the gravitational field equations in the generalized Randall-Sundrum model for an anisotropic brane with Bianchi type I geometry, with a generalized Chaplygin gas as matter source. The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. For a Bianchi type I space-time brane filled with a cosmological fluid obeying the generalized Chaplygin equation of state the general solution of the gravitational field equations can be expressed in an exact parametric form, with the comoving volume taken as parameter. In the limiting cases of a stiff cosmological fluid, with pressure equal to the energy density, and for a pressureless fluid, the solution of the field equations can be expressed in an exact analytical form. The evolution of the scalar field associated to the Chaplygin fluid is also considered and the corresponding potential is obtained. The behavior of the observationally important parameters like shear, anisotropy and deceleration parameter is considered in detail.Comment: 13 pages, 6 figures, accepted for publication in PR
    • …
    corecore