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Abstract

A class of five-dimensional warped solutions is presented. The geometry is everywhere

regular and tends to five-dimensional anti-de Sitter space for large absolute values of the

bulk coordinate. The physical features of the solutions change depending on the value of an

integer parameter. In particular, a set of solutions describes generalized gravitating kinks

where the scalar field interpolates between two different minima of the potential. The other

category of solutions describes instead gravitating defects where the scalar profile is always

finite and reaches the same constant asymptote both for positive and negative values of the

bulk coordinate. In this sense the profiles are non-topological. The physical features of the

zero modes are discussed.

1Electronic address: massimo.giovannini@cern.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44130746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In the presence of infinite extra-dimensions [1] (see also [2, 3]) fields of various spin are

localized around higher dimensional gravitating defects whose properties determine, at least

partially, the features of the localized interactions. Consider, therefore, one of the simplest

incarnations of this idea and suppose that there is only one infinite extra dimension that will

be denoted, in what follows, by w. The five-dimensional line element can then be written as

ds2 = gABd x
Ad xB = a2(w)[ηµνd x

µd xν − dw2], (1)

where ηµν is the Minkowski metric with signature mostly minus; the Latin (uppercase)

indices run over all the five dimensions while the Greek indices run over the (3+1) observable

dimensions. The coordinate w runs continuously from −∞ to +∞. In the situation described

by Eq. (1), five-dimensional domain-wall solutions are known to exist [4, 5, 6, 7] (see also

[8, 9, 10]) and they have the structure of gravitating kinks whose associated geometry is rather

similar to the one generated by 3-brane sources supplemented by a negative cosmological

constant [11]. Five-dimensional gravitating kinks can arise both in the case of Einstein-

Hilbert gravity and in the case of quadratic gravity theories of Euler-Gauss-Bonnet type

(see, for instance, [12, 13, 14, 15] and references therein).

The scalar-tensor action adopted for illustrating the present considerations will then be

given by

S =
∫

d5x
√

|g|
[

− R

2κ
+

1

2
gAB∂Aφ∂Bφ− U(φ)

]

, κ = 8πG5 = 8πM−3
5 , (2)

leading to the equations 2

F2 =
κ

6

[

φ′2

2
− Ua2

]

, F ′ = −κ
4

[

φ′2 +
2

3
Ua2

]

, (3)

φ′′ + 3Fφ′ − ∂U

∂φ
a2 = 0, (4)

where F = a′/a. A consistent solution of Eqs. (3) and (4) can be obtained in the form

a(w) = [(bw)2ν + 1]−
1

2ν , ν ≥ 1, (5)

φ(w) = v ± 1

β
arctan[(bw)ν ], (6)

U(φ) = U0 Λ(φ)
ν−1

ν [(2ν − 1) − (3 + 2ν)Λ(φ)] (7)

where b is a parameter (with dimensions of inverse length) related with the thickness of the

scalar profile and where:

Λ(φ) = sin2 (φ− v), β =

√

κ

3

(

ν2

2ν − 1

)

, U0 =
3b2

2κ
. (8)

2In the following, the prime will always denote a derivation with respect to the bulk coordinate w.
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In Eq. (6), v arises as an integration constant with the same dimensions of β−1. In Eqs. (5),

(6) and (7) ν is a positive integer (i.e. ν ≥ 1). Since the bulk coordinate w may take both

positive and negative values, if ν would be rational or even real, the functions defining the

solution will may become imaginary 3. The curvature invariants pertaining to the solution

defined by Eqs. (5), (6) and (7) can be simply computed and they are

R2 = 16 b4
(bw)4(ν−1)[(2 − 4ν) + 5(bw)2ν ]2

[1 + (bw)2ν ]4−
2

ν

, (9)

RABR
AB = 4 b4

(bw)2(ν−2)[20(bw)6ν + 5(1 − 2ν)2(bw)2ν + 16(1 − 2ν)(bw)4ν ]

[1 + (bw)2ν ]4−
2

ν

, (10)

RABCDR
ABCD = 8b4

(bw)4(ν−1)[5(bw)4ν + 2(1 − 2ν)2 + 4(bw)2ν(1 − 2ν)]

[1 + (bw)2ν ]4−
2

ν

, (11)

where RABCD, RAB and R are, respectively, the Riemann tensor, the Ricci tensor and the

Ricci scalar. In the case of the metric (1), the Weyl invariant vanishes. Since ν ≥ 1, Eq.

(5) implies that a(w) → |bw|−1 in the limit |bw| → ∞, i.e. for values of the bulk coordinate

much larger than the thickness of the configuration. Since ν ≥ 1 is a positive integer, the

curvature invariants do not have poles for any finite value of w. The quantity w0 = b−1 is

the radius of the (asymptotic) AdS5 space. Consistently with this behaviour, the explicit

form of the curvature invariants goes to a constant for |bw| → ∞.

If ν is odd, i.e. ν = 2m + 1 with m = 0, 1, 2, 3, ..., Eq. (6) implies that β(φ− v) varies

between −π/2 and π/2. The plus sign in Eq. (6) corresponds to the kink solution while

the minus sign corresponds to the anti-kink solution. In the case of one spatial dimension,

spatial infinity consists of two points, i.e. ±∞; a topological charge is then customarily

defined for the characterization of (1+1)-dimensional defects such as the ones arising in the

case of sine-Gordon system [16]. When ν is odd, therefore, we will have that the topological

charge does not vanish and is given, in particular, by

Qm =
1

2π

∫

∞

−∞

dw
∂φ

∂w
= ±

√
4m+ 1

2m+ 1
λ, λ =

√

3

4κ
, (12)

where the plus and the minus signs correspond, respectively, to a kink and to an anti-kink

solution.

If ν is even, i.e. ν = 2n with n = 1, 2, 3, ..., from Eq. (6), β(φ− v) goes, asymptotically,

to the same value both for w → −∞ and for w → +∞. Therefore, applying the definition

reported in the first equality of Eq. (12), we will have, in this case that Qn = 0 in spite of the

sign appearing in Eq. (6). This second class of solutions seems then to describe more non-

topological rather than topological defects. It should be clear that five-dimensional gravity

3From a swift inspection of Eqs. (5), (6) and (7) it may seem that the solution can be continued also for

negative values of ν. This is not correct since, if ν < 0, φ′2 becomes negative, or, equivalently, the parameter

β defined in Eq. (8) becomes imaginary.
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Figure 1: Two cases of kink and anti-kink solutions are illustrated. They both arise for odd

ν and, in particular, for ν = 1 (plot at the left) and ν = 3 (plot at the right). Recall that,

when ν is odd, it is conventionally parametrized as ν = 2m+ 1.

is essential in order to have this type of profiles. In the absence of gravity, non-topological

defects in (1 + 1) dimensions are connected with an additive conservation law, so that one

should demand that the system contains, at least, a complex scalar field with global U(1)

symmetry [16] or, equivalently, two real scalar fields [17]. Here, however, because of the

presence of gravity, bell-like profiles can arise even if φ is not complex as the solution (6)

demonstrates explicitly when ν is even.

For graphical illustration, it is practical to rescale φ through β in such a way that the

rescaled field, i.e. φ(w) = βφ(w) is dimensionless. In the following, when not otherwise

stated, we will also fix, without loss of generality, v = 0. The cases m = 0 and m = 1 (i.e.

ν = 1 and ν = 3) are illustrated, respectively, in the left and in the right plot of Fig. 1. As

m increases an intermediate plateau develops close to w = 0 (see the right plot in Fig. 1 and

the left plot in Fig. 2). In the case m = 0 (full line in the right plot of Fig. 2) the potential is

of sine-Gordon type and it is, according to Eq. (7), U(φ) = U0(5 cos 2βφ−3)/2. The minima

of the potential are located, for ν = 1, in −π/2 and in +π/2 (see right plot of Fig. 2). By

looking simultaneously at Fig. 1 (full line in the left plot) and at Fig. 2 (full line in the right

plot) it appears that the kink solution connects the minimum in −π/2 to the the minimum

in π/2 and βφ correctly interpolates between these two values. This situation reminds a bit

the sine-Gordon system in (1 + 1) dimensions [16] where, however, the potential vanishes

at the minima while here it is negative due to the gravitating nature of the solution. As m

increases the potential develops, at the centre of the interval of periodicity, a second (local)

minimum which is located, for the interval chosen in Fig. 2, in φ = 0. Since the minimum is

only local (and not global) the field does not settle down and finally reaches the true global
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Figure 2: In the left plot the behaviour of φ is illustrated for large (odd) ν (as in Fig. 1,

ν = 2m+1). In the plot at the right the potential U(φ) is reported for three different values

of m as specified in the legend.

minimum in π/2. As m increases further (dot-dashed lines in both plots of Fig. 2), the local

minimum becomes more and more pronounced and the length of the intermediate plateau in

φ gets larger (see Fig. 2, left plot). According to Eq. (6), both φ′ and φ′2 are always finite

and regular for every value of the bulk radius. In Figs. 1 and 2 βv = 0 has been assumed.

If ν is even the scalar profile goes, asymptotically, to the same value for w → ±∞. In

Fig. 3 we report the profile of βφ and its related potential for few values of even ν and for

two different values of βv (i.e. βv = 0 and βv = π/2). In the left plot of Fig. 3 the scalar

field is illustrated as a function of the bulk radius for two different values of βv (i.e. βv = 0

and βv = π/2). By increasing the value of n the width of βφ increases (dashed line in the

left plot of Fig. 3). Given the properties of this second class of solutions the case of even ν

resembles the one of a non-topological defect.

As already mentioned the geometry is AdS5 for |bw| → ∞. This aspect can be clearly

appreciated from Fig. 4 (left plot) where the warp factor is illustrated for different values of ν:

for |bw| → ∞, a(w) ≃ 1/|bw|. The curvature invariants, in the same limit, reach a constant

value. In Fig. 4 (right plot) the Riemann invariant is illustrated. The other curvature

invariants are qualitatively similar. As a consequence of the features of the geometry the

four-dimensional Planck mass is finite since it is simply given by

M2
P ≃M3

5

∫

∞

−∞

dwa3(w) = 2bM3
5

Γ(1 + 1
2ν

)Γ( 1
ν
)

Γ( 3
2ν

)
, ν ≥ 1 (13)

where the second equality follows by performing explicitly the integral when a(w) is given by

Eq. (5) and when, as assumed throughout, ν ≥ 1. Since the four-dimensional Planck mass is

finite, the tensor fluctuations of the geometry are localized on the profile both for even and

4



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b w 

β 
φ(

w
)

 n =1,  β v = 0

 n=1,   β v = π/2

 n =6,  β v = π/2

n = 6,  β v =0

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

β φ

U
(φ

)/
U

0
   

   
   

   
 

n  = 1

n = 2

n = 3

n =2, β v = π/2

Figure 3: The profiles of the scalar field (plot at the left) and the potential (plot at the

right) are illustrated for even values of ν. In this case we parametrize ν = 2n with n positive

integer. The cases n = 1 and n = 6 are reported (plot at the left), respectively, with the

full and thin lines. The thick lines (plot at the left) refer to different boundary conditions

as specified in the legend.
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Figure 4: The profile of the warp factor (left plot) and the Riemann invariant (right plot)

for different values of ν. For the other two curvature invariants reported in Eqs. (9) and

(10), the plots are qualitatively similar since they tend to a constant value for |bw| → ∞
and they never get singular for finite w.
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odd ν. This occurrence is common also to the case when the defect is modeled by a 3-brane

[11]. Less obvious is the fact that the scalar fluctuations of the sources are not localized.

These results stem from the analysis of the zero modes of the configurations defined by Eqs.

(5), (6) and (7) and will now be swiftly addressed. To discuss this problem one can then

adopt the formalism developed in [6]. In five dimensions the perturbed geometry leads to 15

independent degrees of freedom which can be classified according to the way they transform

under four-dimensional Poincaré transformations. To the fluctuations of the geometry one

has also to add the fluctuation of the φ, i.e. the fluctuation of the profile of the defect.

Therefore, the fluctuations of the geometry and of the scalar profile can be written as

gAB(xµ, w) = gAB(w) + δgAB(xµ, w), φ(xµ, w) = φ(w) + χ(xµ, w). (14)

where

δgAB = a2(w)
(

2hµν + (∂µfν + ∂νfµ) + 2ηµνψ + 2∂µ∂νE Dµ + ∂µC

Dµ + ∂µC 2ξ

)

. (15)

On top of hµν which is divergence-less and trace-less (i.e. ∂µh
µ
ν=0, hµ

µ = 0) there are four

scalars (i.e. E, ψ, ξ and C) and two divergence-less vectors (Dµ and fµ).

The analysis can be conducted in gauge-invariant terms without assuming any specific

form of the background geometry. Neglecting the vector modes of the geometry 4 the relevant

zero modes are the ones associated with the graviton and with the scalar fluctuations. The

decoupled evolution equation of the tensor modes can be written as [6]

µ′′

µν − ∂α∂
αµµν −

(a3/2)′′

a3/2
µµν = 0. (16)

where µµν = a3/2hµν is the canonical normal mode of the of the action (2) perturbed to

second order in the amplitude of tensor fluctuations [6]. The lowest mass eigenstate of Eq.

(16) is µ(w) = µ0a
3/2(w). Hence, the normalization condition of the tensor zero mode implies

|µ0|2
∫

∞

−∞

a3 dw = 2|µ0|2
∫

∞

0
a3(w) dw = 1. (17)

The integral appearing in Eq. (17) is always convergent if, as assumed throughout the

paper, ν is a positive integer. Therefore, the graviton zero mode is always localized on the

configurations discussed here. The scalar normal mode of the action is a linear combination

χ (defined in Eq. (14)) and and of ψ (defined in Eq. (15). The canonical variable is then

[6] G = a3/2ψ − zχ and it obeys the equation

G′′ − ∂α∂
αG − z′′

z
G = 0, z(w) =

a3/2φ′

F . (18)

4The vector modes are not localized since their corresponding zero mode is not normalizable as it follows

from the evolution equations of Dµ; the other vector, i.e. fµ can be gauged away by using the freedom of

fixing the coordinate system.
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The lowest mass eigenstate of Eq. (18) is given by G(w) = G0z(w) which is normalizable iff

∫

∞

−∞

z2(w) dw =
3

κ
(2ν − 1)

∫ +∞

−∞

dw

(bw)2ν [1 + (bw)2ν ]
3

2ν

, ν ≥ 1 (19)

where the right hand side follows from the definition off z(w) and from the explicit form

of the solution. But the integrand in Eq. (19) is divergent for |bw| → 0 as |bw|−2ν. As

ν increases, the divergence becomes always more severe. We then conclude that the scalar

modes of the geometry are not localized on the defect.

In conclusion a new class of solutions of five-dimensional warped geometries has been pre-

sented and discussed. This class of solution contains, simultaneously, kink-like profiles and

bell-like scalar profiles. The regular geometry of the configuration allows the localization

of the tensor modes of the geometry. Neither the scalar nor the vector modes are local-

ized. The present findings seem to suggest that not only domain walls but also gravitating

non-topological defects if five dimensions may be used to localize gravitational interactions.

Furthermore, it is intriguing that these two rather different physical situations may arise in

the same class of solutions.
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