5 research outputs found

    Application of the ICRP respiratory tract model to estimate pulmonary retention of industrially sampled indium-containing dusts

    No full text
    <p>Inhalation of indium-containing dusts is associated with the development of indium lung disease. Workers may be exposed to several different chemical forms of indium; however, their lung dosimetry is not fully understood. We characterized the physicochemical properties and measured the lung dissolution kinetics of eight indium-containing dusts. Indium dissolution rates in artificial lung fluids spanned two orders of magnitude. We used the International Commission on Radiological Protection (ICRP) human respiratory model (HRTM) to estimate pulmonary indium deposition, retention and biokinetic clearance to blood. For a two-year (median workforce tenure at facility) exposure to respirable-sized particles of the indium materials, modeled indium clearance (>99.99% removed) from the alveolar-interstitial compartment was slow for all dusts; salts would clear in 4 years, sintered indium–tin oxide (ITO) would clear in 9 years, and indium oxide would require 48 years. For this scenario, the ICRP HRTM predicted that indium translocated to blood would be present in that compartment for 3.5–18 years after cessation of exposure, depending on the chemical form. For a 40-year exposure (working lifetime), clearance from the alveolar–interstitial compartment would require 5, 10 and 60 years for indium salts, sintered ITO and indium oxide, respectively and indium would be present in blood for 5–53 years after exposure. Consideration of differences in chemical forms of indium, dissolution rates, alveolar clearance and residence time in blood should be included in exposure assessment and epidemiological studies that rely on measures of total indium in air or blood to derive risk estimates.</p

    Emission of particulate matter from a desktop three-dimensional (3D) printer

    No full text
    <p>Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m<sup>3</sup> chamber and in a small room (32.7 m<sup>3</sup>) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.</p

    Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities

    No full text
    <div><p>Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk.</p><p>Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures.</p><p>The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels.</p><p>Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant.</p><p>[Supplementary materials are available for this article. Go to the publisher's online edition of <i>Journal of Occupational and Environmental Hygiene</i> for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.]</p></div

    Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer

    No full text
    <p>Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m<sup>3</sup> chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49–3552 µg h<sup>−1</sup>) compared to the laser printers (5782–7735 µg h<sup>−1</sup>). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and 4-oxopentanal) from a FDM 3-D printer should be made when designing exposure assessment and control strategies.</p

    Exposures and Cross-shift Lung Function Declines in Wildland Firefighters

    No full text
    <div><p>Respiratory problems are common among wildland firefighters. However, there are few studies directly linking occupational exposures to respiratory effects in this population. Our objective was to characterize wildland fire fighting occupational exposures and assess their associations with cross-shift changes in lung function. We studied 17 members of the Alpine Interagency Hotshot Crew with environmental sampling and pulmonary function testing during a large wildfire. We characterized particles by examining size distribution and mass concentration, and conducting elemental and morphological analyses. We examined associations between cross-shift lung function change and various analytes, including levoglucosan, an indicator of wood smoke from burning biomass. The levoglucosan component of the wildfire aerosol showed a predominantly bimodal size distribution: a coarse particle mode with a mass median aerodynamic diameter about 12 μm and a fine particle mode with a mass median aerodynamic diameter < 0.5 μm. Levoglucosan was found mainly in the respirable fraction and its concentration was higher for fire line construction operations than for mop-up operations. Larger cross-shift declines in forced expiratory volume in one second were associated with exposure to higher concentrations of respirable levoglucosan (p < 0.05). Paired analyses of real-time personal air sampling measurements indicated that higher carbon monoxide (CO) concentrations were correlated with higher particulate concentrations when examined by mean values, but not by individual data points. However, low CO concentrations did not provide reliable assurance of concomitantly low particulate concentrations. We conclude that inhalation of fine smoke particles is associated with acute lung function decline in some wildland firefighters. Based on short-term findings, it appears important to address possible long-term respiratory health issues for wildland firefighters. [Supplementary materials are available for this article. Go to the publisher's online edition of <i>Journal of Occupational and Environmental Hygiene</i> for the following free supplemental resources: a file containing additional information on historical studies of wildland fire exposures, a file containing the daily-exposure-severity questionnaire completed by wildland firefighter participants at the end of each day, and a file containing additional details of the investigation of correlations between carbon monoxide concentrations and other measured exposure factors in the current study.]</p></div
    corecore