174 research outputs found

    A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor

    Full text link
    We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependence of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects that arise from coherent tunneling of electrons in the dot

    III-V nanowires and nanowire optoelectronic devices

    Get PDF
    III–V nanowires (NWs) have been envisioned as nanoscale materials for next-generation technology with good functionality, superior performance, high integration ability and low cost, because of their special growth modes and unique 1D structure. In this review, we summarize the main challenges and important progress of the fabrication and applications of III–V NWs. We start with the III–V NW growth, that significantly influences the NW morphology and crystal quality. Attention is then given to the fabrication of some advanced III–V structures composed of axial and radial junctions. After that, we review the advantages, challenges, and major breakthroughs of using III–V NWs as solar energy harvesters and light emitters. Finally, we attempt to give a perspective look on the future development trends and the remaining challenges in the research field of III–V NWs

    Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    Full text link
    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena due to their charge stability and robust electronic properties after thermal cycling. However these devices require a large top-gate which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here we demonstrate rf reflectometry is possible in an undoped SET.Comment: Four pages, three figures, one supplementary fil

    Shadow epitaxy for in-situ growth of generic semiconductor/superconductor devices

    Full text link
    Uniform, defect-free crystal interfaces and surfaces are crucial ingredients for realizing high-performance nanoscale devices. A pertinent example is that advances in gate-tunable and topological superconductivity using semiconductor/superconductor electronic devices are currently built on the hard proximity-induced superconducting gap obtained from epitaxial indium arsenide/aluminium heterostructures. Fabrication of devices requires selective etch processes; these exist only for InAs/Al hybrids, precluding the use of other, potentially superior material combinations. We present a crystal growth platform -- based on three-dimensional structuring of growth substrates -- which enables synthesis of semiconductor nanowire hybrids with in-situ patterned superconductor shells. This platform eliminates the need for etching, thereby enabling full freedom in choice of hybrid constituents. We realise and characterise all the most frequently used architectures in superconducting hybrid devices, finding increased yield and electrostatic stability compared to etched devices, along with evidence of ballistic superconductivity. In addition to aluminium, we present hybrid devices based on tantalum, niobium and vanadium. This is the submitted version of the manuscript. The accepted, peer reviewed version is available from Advanced Materials: http://doi.org/10.1002/adma.201908411 Previous title: Shadow lithography for in-situ growth of generic semiconductor/superconductor device

    Ten-fold enhancement of InAs nanowire photoluminescence emission with an InP passivation layer

    Get PDF
    In this letter, we demonstrate that a significant improvement of optical performance of InAs nanowires can be achieved by capping the core InAs nanowires with a thin InP shell, which successfully passivates the surface states reducing the rate of non-radiative recombination. The improvements have been confirmed by detailed photoluminescence measurements, which showed up to ten-fold increase in the intensity of room-temperature photoluminescence from the capped InAs/InP nanowires compared to the sample with core-only InAs nanowires. Moreover, the nanowires exhibit high stability of total photoluminescence emission strength across temperature range from 10 to 300 K as a result of strong quantum confinement. These findings could be the key to successful implementation of InAs nanowires into optoelectronic devices

    Risk of being granted disability pension among incident cancer patients before and after a structural pension reform:A Danish population-based, matched cohort study

    Get PDF
    OBJECTIVE: This study aimed to examine the risk of being granted a disability pension (DP) among incident cancer patients up to five years after diagnosis compared to a match control group, before and after the structural reform of the Danish Disability Pension Act in 2013. METHODS: All 20–60-year-old incident cancer-diagnosed individuals from 2000 to 2015 were identified in the Danish Cancer Registry. A control group, not previously diagnosed with cancer, was identified in Statistics Denmark matched by gender, age, education, and household income. Risk differences (RD) in cumulative incidence proportions of being granted a DP between cancer patients and controls were analyzed before and after the reform. RESULTS: In total, 111 773 incident cancer patients and 506 904 controls were included in the study. Before reform 10 561 cancer patients and 11 231 controls were granted DP; and 2570 cancer patients and 2646 controls were granted DP after the reform. The adjusted RD of being granted DP was significantly higher for cancer patients versus controls at all time points before the reform. The RD increased the most during the first (RD 3.6, 95% CI 3.5–3.7) and second (RD 7.2, 95% CI 7.0–7.4) follow-up year and levelled off the remaining three years. After the reform, the adjusted RD were lower for all 1–5 follow-up years compared to before the reform (RD range 2.8–7.7, 95% CI 2.6–8.1). CONCLUSION: The 2013 reform of the Disability Pension Act reduced the risk of cancer patients being granted DP. The impact on a personal level should be further explored
    • …
    corecore