43,825 research outputs found

    Molecular aspects of MERS-CoV

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus which can cause acute respiratory distress in humans and is associated with a relatively high mortality rate. Since it was first identified in a patient who died in a Jeddah hospital in 2012, the World Health Organization has been notified of 1735 laboratory-confirmed cases from 27 countries, including 628 deaths. Most cases have occurred in Saudi Arabia. MERS-CoVancestors may be found in OldWorld bats of the Vespertilionidae family. After a proposed bat to camel switching event, transmission of MERS-CoV to humans is likely to have been the result of multiple zoonotic transfers from dromedary camels. Human-to-human transmission appears to require close contact with infected persons, with outbreaks mainly occurring in hospital environments. Outbreaks have been associated with inadequate infection prevention and control implementation, resulting in recommendations on basic and more advanced infection prevention and control measures by the World Health Organization, and issuing of government guidelines based on these recommendations in affected countries including Saudi Arabia. Evolutionary changes in the virus, particularly in the viral spike protein which mediates virus-host cell contact may potentially increase transmission of this virus. Efforts are on-going to identify specific evidence-based therapies or vaccines. The broad-spectrum antiviral nitazoxanide has been shown to have in vitro activity against MERS-CoV. Synthetic peptides and candidate vaccines based on regions of the spike protein have shown promise in rodent and non-human primate models. GLS-5300, a prophylactic DNA-plasmid vaccine encoding S protein, is the first MERS-CoV vaccine to be tested in humans, while monoclonal antibody, m336 has given promising results in animal models and has potential for use in outbreak situations

    The physics and kinematics of the evolved, interacting planetary nebula PN G342.0-01.7

    Full text link
    Here we aim to study the physical and kinematical characteristics of the unstudied old planetary nebula (PN) PN G342.0-01.7, which shows evidence of interaction with its surrounding interstellar medium. We used Integral Field Spectra from the Wide Field Spectrograph on the ANU 2.3 m telescope to provide spectroscopy across the whole object covering the spectral range 3400-7000 {\AA}. We formed narrow-band images to investigate the excitation structure. The spectral analysis shows that the object is a distant Peimbert Type I PN of low excitation, formally of excitation class of 0.5. The low electron density, high dynamical age, and low surface brightness of the object confirm that it is observed fairly late in its evolution. It shows clear evidence for dredge-up of CN-processed material characteristic of its class. In addition, the low peculiar velocity of 7 km s1^{-1} shows it to be a member of the young disk component of our Galaxy. We built a self-consistent photoionisation model for the PNe matching the observed spectrum, the Hβ\beta luminosity, and the diameter. On the basis of this we derive an effective temperature logTeff5.05\log T_{\rm eff} \sim 5.05 and luminosity 1.85<logL<2.251.85 < \log L < 2.25. The temperature is much higher than might have been expected using the excitation class, proving that this can be misleading in classifying evolved PNe. PN G342.0-01.7 is in interaction with its surrounding interstellar medium through which the object is moving in the south-west direction. This interaction drives a slow shock into the outer PN ejecta. A shock model suggests that it only accounts for about 10\% of the total luminosity, but has an important effect on the global spectrum of the PN.Comment: 15 pages, 6 figures, A&A accepted 201

    Complete gluon bremsstrahlung corrections to the process b -> s l+ l-

    Full text link
    In a recent paper, we presented the calculation of the order (alpha_s) virtual corrections to b->s l+ l- and of those bremsstrahlung terms which are needed to cancel the infrared divergences. In the present paper we work out the remaining order(alpha_s) bremsstrahlung corrections to b->s l+ l- which do not suffer from infrared and collinear singularities. These new contributions turn out to be small numerically. In addition, we also investigate the impact of the definition of the charm quark mass on the numerical results.Comment: 20 pages including 11 postscript figure

    Large electroweak penguin contribution in B -> K pi and pi pi decay modes

    Full text link
    We discuss about a possibility of large electroweak penguin contribution in B -> K pi and pi pi from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B -> K pi decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B -> pi pi. We show, as an example, a solution to solve the discrepancies in both B -> K pi and B -> pi pi. However the magnitude of the parameters and the strong phase estimated from experimental data are quite large compared with the theoretical estimations. It may be suggesting some new physics effects are including in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin type processes.Comment: 23 pages, 9 figure
    corecore