37 research outputs found

    Variations on Kaluza-Klein Cosmology

    Full text link
    We investigate the cosmological consequences of having quantum fields living in a space with compactified dimensions. We will show that the equation of state is not modified by topological effects and so the dynamics of the universe remains as it is in the infinite volume limit. On the contrary the thermal history of the universe depends on terms that are associated with having non-trivial topology. In the conclusions we discuss some issues about the relationship between the c=1c=1 non-critical string-inspired cosmology and the result obtained with matter given by a hot massless field in S^{1}\times \mbox{\bf R}.Comment: 22 pages, 7 figures in a uuencoded file (using uufiles), LaTeX, FTUAM-93/13 (LaTeX errors corrected

    Gravitational shocks as a key ingredient of Gamma-Ray Bursts

    Full text link
    We identify a novel physical mechanism that may be responsible for energy release in γ\gamma-ray bursts. Radial perturbations in the neutron core, induced by its collision with collapsing outer layers during the early stages of supernova explosions, can trigger a gravitational shock, which can readily eject a small but significant fraction of the collapsing material at ultra-relativistic speeds. The development of such shocks is a strong-field effect arising in near-critical collapse in General Relativity and has been observed in numerical simulations in various contexts, including in particular radially perturbed neutron star collapse, albeit for a tiny range of initial conditions. Therefore, this effect can be easily missed in numerical simulations if the relevant parameter space is not exhaustively investigated. In the proposed picture, the observed rarity of γ\gamma-ray bursts would be explained if the relevant conditions for this mechanism appear in only about one in every 10410510^4-10^5 core collapse supernovae. We also mention the possibility that near-critical collapse could play a role in powering the central engines of Active Galactic Nuclei.Comment: 9 pages, 3 figure

    Thermofield Dynamics of the Heterotic String - Physical Aspects of the Thermal Duality -

    Full text link
    The thermofield dynamics of the D = 10 heterotic thermal string theory is described in proper reference to the thermal duality symmetry as well as the thermal stability of modular invariance in association with the global phase structure of the D = 10 heterotic thermal string ensemble.Comment: 8 pages, LaTeX, Minor correction

    Initial Conditions and the Structure of the Singularity in Pre-Big-Bang Cosmology

    Get PDF
    We propose a picture, within the pre-big-bang approach, in which the universe emerges from a bath of plane gravitational and dilatonic waves. The waves interact gravitationally breaking the exact plane symmetry and lead generically to gravitational collapse resulting in a singularity with the Kasner-like structure. The analytic relations between the Kasner exponents and the initial data are explicitly evaluated and it is shown that pre-big-bang inflation may occur within a dense set of initial data. Finally, we argue that plane waves carry zero gravitational entropy and thus are, from a thermodynamical point of view, good candidates for the universe to emerge from.Comment: 18 pages, LaTeX, epsfig. 3 figures included. Minor changes; paragraph added in the introduction, references added and typos corrected. Final version published in Classical and Quantum Gravit

    A note on supersymmetric Yang-Mills thermodynamics

    Get PDF
    The thermodynamics of supersymmetric Yang-Mills theories is studied by computing the two-loop correction to the canonical free energy and to the equation of state for theories with 16, 8 and 4 supercharges in any dimension 4d104\leq d\leq 10, and in two dimensions at finite volume. In the four-dimensional case we also evaluate the first non-analytic contribution in the 't Hooft coupling to the free energy, arising from the resummation of ring diagrams. To conclude, we discuss some applications to the study of the Hagedorn transition in string theory in the context of Matrix strings and speculate on the possible physical meaning of the transition.Comment: 19 pages, harvmac, epsf. 1 figure included. Minor changes: typos corrected; references, a footonote and a note adde

    Duality in Non-Trivially Compactified Heterotic Strings

    Full text link
    We study the implications of duality symmetry on the analyticity properties of the partition function as it depends upon the compactification length. In order to obtain non-trivial compactifications, we give a physical prescription to get the Helmholtz free energy for any heterotic string supersymmetric or not. After proving that the free energy is always invariant under the duality transformation Rα/(4R)R\rightarrow \alpha^{'}/(4R) and getting the zero temperature theory whose partition function corresponds to the Helmholtz potential, we show that the self-dual point R0=α/2R_{0}=\sqrt{\alpha^{'}}/2 is a generic singularity as the Hagedorn one. The main difference between these two critical compactification radii is that the term producing the singularity at the self-dual point is finite for any RR0R \neq R_{0}. We see that this behavior at R0R_{0} actually implies a loss of degrees of freedom below that point.Comment: (Preprint No. FTUAM-92/12) 17 page

    Stability of marginally outer trapped surfaces and symmetries

    Full text link
    We study properties of stable, strictly stable and locally outermost marginally outer trapped surfaces in spacelike hypersurfaces of spacetimes possessing certain symmetries such as isometries, homotheties and conformal Killings. We first obtain results for general diffeomorphisms in terms of the so-called metric deformation tensor and then particularize to different types of symmetries. In particular, we find restrictions at the surfaces on the vector field generating the symmetry. Some consequences are discussed. As an application we present a result on non-existence of stable marginally outer trapped surfaces in slices of FLRW.Comment: 23 pages, 3 figure

    Positioning systems in Minkowski space-time: from emission to inertial coordinates

    Full text link
    The coordinate transformation between emission coordinates and inertial coordinates in Minkowski space-time is obtained for arbitrary configurations of the emitters. It appears that a positioning system always generates two different coordinate domains, namely, the front and the back emission coordinate domains. For both domains, the corresponding covariant expression of the transformation is explicitly given in terms of the emitter world-lines. This task requires the notion of orientation of an emitter configuration. The orientation is shown to be computable from the emission coordinates for the users of a `central' region of the front emission coordinate domain. Other space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur

    Quintessential brane cosmology

    Get PDF
    We study a class of braneworlds where the cosmological evolution arises as the result of the movement of a three-brane in a five-dimensional static dilatonic bulk, with and without reflection symmetry. The resulting four-dimensional Friedmann equation includes a term which, for a certain range of the parameters, effectively works as a quintessence component, producing an acceleration of the universe at late times. Using current observations and bounds derived from big-bang nucleosynthesis we estimate the parameters that characterize the model.Comment: 29 pages. LaTeX. 5 postscript figures included. v2 typos corrected and references added. Final version to appear in Phys.Rev.
    corecore