28 research outputs found

    Quantitative magnetotail characteristics of different magnetospheric states

    Get PDF
    Quantitative relationships allowing one to compute the lobe magnetic field, flaring angle and tail radius, and to evaluate magnetic flux based on solar wind/IMF parameters and spacecraft position are obtained for the middle magnetotail, <i>X</i>=(–15,–35)<i>R<sub>E</sub></i>, using 3.5 years of simultaneous Geotail and Wind spacecraft observations. For the first time it was done separately for different states of magnetotail including the substorm onset (SO) epoch, the steady magnetospheric convection (SMC) and quiet periods (Q). In the explored distance range the magnetotail parameters appeared to be similar (within the error bar) for Q and SMC states, whereas at SO their values are considerably larger. In particular, the tail radius is larger by 1–3 <i>R<sub>E</sub></i> at substorm onset than during Q and SMC states, for which the radius value is close to previous magnetopause model values. The calculated lobe magnetic flux value at substorm onset is ~1GWb, exceeding that at Q (SMC) states by ~50%. The model magnetic flux values at substorm onset and SMC show little dependence on the solar wind dynamic pressure and distance in the tail, so the magnetic flux value can serve as an important discriminator of the state of the middle magnetotail.<br><br> <b>Key words.</b> Magnetospheric physics (solar windmagnetosphere- interactions, magnetotail, storms and substorms

    In situ magnetotail magnetic flux calculation

    No full text

    In situ magnetotail magnetic flux calculation

    No full text
    We explore two new modifications of the magnetotail magnetic flux (<i>F</i>) calculation algorithm based on the Petrinec and Russell (1996) (PR96) approach of the tail radius determination. Unlike in the PR96 model, the tail radius value is calculated at each time step based on simultaneous magnetotail and solar wind observations. Our former algorithm, described in Shukhtina et al. (2009), required that the "tail approximation" requirement were fulfilled, i.e., it could be applied only tailward <i>x</i> &sim; &minus;15 <i>R</i><sub><i>E</i></sub>. The new modifications take into account the approximate uniformity of the magnetic field of external sources in the near and middle tail. Tests, based on magnetohydrodynamics (MHD) simulations, show that this approach may be applied at smaller distances, up to <i>x</i> &sim; &minus;3 <i>R</i><sub><i>E</i></sub>. The tests also show that the algorithm fails during long periods of strong positive interplanetary magnetic field (IMF) <i>B<sub>z</sub></i>. A new empirical formula has also been obtained for the tail radius at the terminator (at <i>x</i> = 0) which improves the calculations

    Time-varying magnetotail magnetic flux calculation: a test of the method

    Get PDF
    We modified the Petrinec and Russell (1996) algorithm to allow the computation of time-varying magnetotail magnetic flux based on simultaneous spacecraft measurements in the magnetotail and near-Earth solar wind. In view of many assumptions made we tested the algorithm against MHD simulation in the artificial event, which provides the input from two artificial spacecraft to compute the magnetic flux F values with our algorithm; the latter are compared with flux values, obtained by direct integration in the tail cross-section. The comparison shows similar time variations of predicted and simulated fluxes as well as their good correlation (cc&gt;0.9) for the input taken from the tail lobe, which somewhat degrades if using the "measurements" from the central plasma sheet. The regression relationship between the predicted and computed flux values is rather stable allowing one to correct the absolute value of predicted magnetic flux. We conclude that this method is a perspective tool to monitor the tail magnetic flux which is one of the main global magnetotail parameters

    Average characteristics of the midtail plasma sheet in different dynamic regimes of the magnetosphere

    Get PDF
    We study average characteristics of plasma sheet convection in the middle tail during different magnetospheric states (Steady Magnetospheric Convection, SMC, and substorms) using simultaneous magnetotail (Geotail, 15-35 RE downtail) and solar wind (Wind spacecraft) observations during 3.5 years. (1) A large data set allowed us to obtain the average values of the plasma sheet magnetic flux transfer rate (Ey and directly compare it with the dayside transfer rate (Emod for different magnetospheric states. The results confirm the magnetic flux imbalance model suggested by Russell and McPherron&nbsp;(1973), namely: during SMC periods the day-to-night flux transport rate equals the global Earthward plasma sheet convection; during the substorm growth phase the plasma sheet convection is suppressed on the average by 40%, whereas during the substorm expansion phase it twice exceeds the day-to-night global flux transfer rate. (2) Different types of substorms were revealed. About 1/3 of all substorms considered displayed very weak growth in the tail lobe magnetic field before the onset. For these events the plasma sheet transport was found to be in a balance with the day-to-night flux transfer, as in the SMC events. However, the lobe magnetic field value in these cases was as large as that in the substorms with a classic growth phase just before the onset (both values exceed the average level of the lobe field during the SMC). Also, in both groups similar configurational changes (magnetic field stretching and plasma sheet thinning) were observed before the substorm onset. (3) Superimposed epoch analysis showed that the plasma sheet during the late substorm recovery phase has the characteristics similar to those found during SMC events, the SMC could be a natural magnetospheric state following the substorm

    Comparison of magnetotail magnetic flux estimates based on global auroral images and simultaneous solar wind—magnetotail measurements

    Full text link
    We compared simultaneous magnetotail magnetic flux F estimates, (1) based on in situ spacecraft measurements in the tail and solar wind (F[SUB]T[/SUB]) with (2) the polar cap magnetic flux, estimated from global auroral images (using proton-induced or electron-induced emissions, F[SUB]p[/SUB] or F[SUB]e[/SUB], respectively). Simultaneous F[SUB]p[/SUB] and F[SUB]e[/SUB] estimates gave the correlation coefficient CC=0.74, indicating that these measures are not absolutely precise. Regression analysis of F[SUB]T[/SUB] versus F[SUB]e[/SUB] and F[SUB]p[/SUB] gave CC values 0.73 and 0.50, correspondingly. F[SUB]T[/SUB] values, containing closed magnetic flux, are systematically higher than F[SUB]p[/SUB] and F[SUB]e[/SUB] by 20-30%. Motivated by diverse results, published by different groups, we reanalyzed the F dependence on the dayside merging electric field E[SUB]m[/SUB] for different dynamical states. The linear regression F(E[SUB]m[/SUB]) for substorm onsets shows a large slope ˜0.07-0.12GWb/(mV/m) for all F[SUB]p[/SUB], F[SUB]e[/SUB] and F[SUB]T[/SUB], confirming the loading-unloading substorm scheme. For SMC intervals this slope is only 0.03 GWb/(mV/m)
    corecore