4,052 research outputs found

    Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?

    Full text link
    We consider a piecewise smooth system in the neighborhood of a co-dimension 2 discontinuity manifold Σ\Sigma. Within the class of Filippov solutions, if Σ\Sigma is attractive, one should expect solution trajectories to slide on Σ\Sigma. It is well known, however, that the classical Filippov convexification methodology is ambiguous on Σ\Sigma. The situation is further complicated by the possibility that, regardless of how sliding on Σ\Sigma is taking place, during sliding motion a trajectory encounters so-called generic first order exit points, where Σ\Sigma ceases to be attractive. In this work, we attempt to understand what behavior one should expect of a solution trajectory near Σ\Sigma when Σ\Sigma is attractive, what to expect when Σ\Sigma ceases to be attractive (at least, at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature. Through analysis and experiments we will confirm some known facts, and provide some important insight: (i) when Σ\Sigma is attractive, a solution trajectory indeed does remain near Σ\Sigma, viz. sliding on Σ\Sigma is an appropriate idealization (of course, in general, one cannot predict which sliding vector field should be selected); (ii) when Σ\Sigma loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of Σ\Sigma; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near Σ\Sigma as long as Σ\Sigma is attractive, and so that it will be leaving (a neighborhood of) Σ\Sigma when Σ\Sigma looses attractivity. We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near Σ\Sigma (or sliding motion on Σ\Sigma) should have been taking place.Comment: 19 figure

    Catalytic Strand Separation by RECQ1 Is Required for RPA-Mediated Response to Replication Stress

    Get PDF
    SummaryThree (BLM, WRN, and RECQ4) of the five human RecQ helicases are linked to genetic disorders characterized by genomic instability, cancer, and accelerated aging [1]. RECQ1, the first human RecQ helicase discovered [2–4] and the most abundant [5], was recently implicated in breast cancer [6, 7]. RECQ1 is an ATP-dependent DNA-unwinding enzyme (helicase) [8, 9] with roles in replication [10–12] and DNA repair [13–16]. RECQ1 is highly expressed in various tumors and cancer cell lines (for review, see [17]), and its suppression reduces cancer cell proliferation [14], suggesting a target for anti-cancer drugs. RECQ1’s assembly state plays a critical role in modulating its helicase, branch migration (BM), or strand annealing [18, 19]. The crystal structure of truncated RECQ1 [20, 21] resembles that of E. coli RecQ [22] with two RecA-like domains, a RecQ-specific zinc-binding domain and a winged-helix domain, the latter implicated in DNA strand separation and oligomer formation. In addition, a conserved aromatic loop (AL) is important for DNA unwinding by bacterial RecQ [23, 24] and truncated RECQ1 helicases [21]. To better understand the roles of RECQ1, two AL mutants (W227A and F231A) in full-length RECQ1 were characterized biochemically and genetically. The RECQ1 mutants were defective in helicase or BM but retained DNA binding, oligomerization, ATPase, and strand annealing. RECQ1-depleted HeLa cells expressing either AL mutant displayed reduced replication tract length, elevated dormant origin firing, and increased double-strand breaks that could be suppressed by exogenously expressed replication protein A (RPA). Thus, RECQ1 governs RPA’s availability in order to maintain normal replication dynamics, suppress DNA damage, and preserve genome homeostasis

    The Swiss Board Directors Network in 2009

    Get PDF
    We study the networks formed by the directors of the most important Swiss boards and the boards themselves for the year 2009. The networks are obtained by projection from the original bipartite graph. We highlight a number of important statistical features of those networks such as degree distribution, weight distribution, and several centrality measures as well as their interrelationships. While similar statistics were already known for other board systems, and are comparable here, we have extended the study with a careful investigation of director and board centrality, a k-core analysis, and a simulation of the speed of information propagation and its relationships with the topological aspects of the network such as clustering and link weight and betweenness. The overall picture that emerges is one in which the topological structure of the Swiss board and director networks has evolved in such a way that special actors and links between actors play a fundamental role in the flow of information among distant parts of the network. This is shown in particular by the centrality measures and by the simulation of a simple epidemic process on the directors network.Comment: Submitted to The European Physical Journal

    Study of radiation effects on bipolar transistors

    Get PDF
    Abstract In this paper it was shown that the irradiation with neutrons and carbon ions leads to gain degradation in bipolar transistors due to generation of defects. The density of these generated defects is independent of the type of irradiation (neutrons or carbon ions). Thus, it is possible to evaluate Δ(1/β), once the expected Frenkel pair density is known. The dependence of the damage constant on collector current is a power law function, with the exception of the lateral pnp transistors, that shows a higher sensitivity to radiation and a different behaviour. Neutrons give a smaller density of Frenkel pairs (CF) than the two sorts of carbon ions of high energy (CHE) and medium energy (CME). It was found that CME causes a higher concentration of CF. The calculated ratio R=CF/Φ, where CF is the Frenkel pair density and Φ fluence does not depend on Φ, for a given type of radiation. However, it depends on the incoming particle type. Its smallest calculated value was obtained for neutrons (R=6.1×10), which increases to 1.25×103 for CHE and to 1.1×104 for CME

    Investigation of irradiated monolithic transistors for space applications

    Get PDF
    In this paper experimental results on radiation effects on a BICMOS high speed commercial technology, manufactured by STMicroelectronics, are reported. Bipolar transistors were irradiated by neutrons, ions, or by both of them. Fast neutrons, as well as other types of particles, produce defects, mainly by displacing silicon atoms from their lattice positions to interstitial locations, i.e. generating vacancy-interstitial pairs, the so-called Frenkel pairs (FP). Defects introduce trapping energy states which degrade the common emitter current gain β. The gain degradation has been investigated for collector current Ic between 1 μA and 1 mA. It was found a linear dependence of Δ(1/β)=1/βi−1/β (where βi and β are the gain after and before the irradiation) as a function of the concentration of FP. The bipolar transistors made on this technology have shown to be particularly radiation resistant. Both base and collector currents have been also systematically investigated

    The evolution of interdisciplinarity in physics research

    Get PDF
    Science, being a social enterprise, is subject to fragmentation into groups that focus on specialized areas or topics. Often new advances occur through cross-fertilization of ideas between sub-fields that otherwise have little overlap as they study dissimilar phenomena using different techniques. Thus to explore the nature and dynamics of scientific progress one needs to consider the large-scale organization and interactions between different subject areas. Here, we study the relationships between the sub-fields of Physics using the Physics and Astronomy Classification Scheme (PACS) codes employed for self-categorization of articles published over the past 25 years (1985-2009). We observe a clear trend towards increasing interactions between the different sub-fields. The network of sub-fields also exhibits core-periphery organization, the nucleus being dominated by Condensed Matter and General Physics. However, over time Interdisciplinary Physics is steadily increasing its share in the network core, reflecting a shift in the overall trend of Physics research.Comment: Published version, 10 pages, 8 figures + Supplementary Informatio
    corecore