324 research outputs found

    Pressure induced anisotropy of electrical conductivity in polycrystalline molybdenum disulfide

    Get PDF
    Anisotropic specimens of MoS2 are obtained by pressing the microcrystalline powder into special die. This inelastic compression results in a rearrangement of the disulfide micro platelets observed by atomic force microscopy and reflected in the macroscopic anisotropy in electrical conductivity in these samples. The conductivity measured parallel and perpendicular to the direction of applied pressure exhibits an anisotropy factor of 10 at 1 GPa. This behaviour of the conductivity as a function of applied pressure is explained as the result of the simultaneous influence of a rearrangement of the micro platelets in the solid and the change of the inter-grain distances

    The formation of nanotubes and nanocoils of molybdenum disulphide

    Get PDF
    This work reports the successful realization of MoS2 nanotubes by a novel intercalation chemistry and hydrothermal treatment. An inorganic-organic precursor of hexadecylamine (HDA) and molybdenum disulphide (MoS2) were used in synthesizing the nanocomposite comprising laminar MoS2 with HDA intercalated in the interlaminar spacing. The formation of MoS2 nanotubes occurred during hydrothermal treatment (HT) by a self-organized rolling mechanism. The nanotubes were observed to have dimensions 2-12 µm in length and inner diameters typically in the range of 25-100 nm. We also report the formation of amorphous nanocoils of MoS2 obtained during similar procedures

    Vanadate conformation variations in vanadium pentoxide nanostructures

    Get PDF
    We report the comparative structural-vibrational study of nanostructures of nanourchins, nanotubes, and nanorods of vanadium oxide. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. Both Raman scattering and infrared spectroscopies showed that the structure of nanourchins, nanotubes, and nanorods of vanadium oxide nanocomposite are strongly dependent on the valency of the vanadium, its associated interactions with the organic surfactant template, and on the packing mechanism and arrangement of the surfactant between vanadate layers. Accurate assignment of the vibrational modes to the V-O coordinations has allowed their comparative classification and relation to atomic layer structure. Although all structures are formed from the same precursor, differences in vanadate conformations due to the hydrothermal treatment and surfactant type result in variable degrees of crystalline order in the final nanostructure. The nanotube-containing nanourchins contain vanadate layers in the nanotubes that are in a distorted γ- V5+ conformation, whereas the the nanorods, by comparison, show evidence for V5+ and V4+ species-containing ordered VOx lamina

    Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures

    Get PDF
    We report the detailed characterization of high quality vanadium oxide (VOx) nanotubes (NTs) and highlight the zipping of adjacent vanadate layers in such NTs formed on remarkable nanourchin structures. These nanostructures consist of high-density spherical radial arrays of NTs. The results evidence vanadate NTs with unprecedented uniformity and evidences the first report of vanadate atomic layer zipping. The NTs are ∼2 μm in length with inner diameters of 20-30 nm. The tube walls comprise scrolled triplet-layers of vanadate intercalated with organic surfactant. Such high-volume structures might be useful as open-access electrolyte scaffolds for lithium insertion-based charge storage devices

    Comparative structural-vibrational study of nano-urchin and nanorods of vanadium oxide

    Get PDF
    We present a comparative structural–vibrational study of nanostructured systems of V2O5: nano-urchin (VONURs) which are spherical structures composed of a radially oriented array of VOx nanotubes (VOx-NTs) with a volumetric density of ∼40 sr–1, and vanadium oxide nanorods (VOx-NRDs) with an average length of ∼100 nm. The Raman scattering spectrum of the nano-urchin exhibits a band at 1014 cm–1 related to the distorted gamma conformation of the vanadium pentoxide (γ-V5+). The infrared vibrational spectra of the nanorods sample also exhibit a distorted laminar V2O5 structure with evidence observed for quadravalent V4+ species at 921 cm–1

    Low-dimensional, hinged bar-code metal oxide layers and free-standing, ordered organic nanostructures from turbostratic vanadium oxide

    Get PDF
    Both low-dimensional bar-coded metal oxide layers, which exhibit molecular hinging, and free-standing organic nanostructures can be obtained from unique nanofibers of vanadium oxide (VOx). The nanofibers are successfully synthesized by a simple chemical route using an ethanolic solution of vanadium pentoxide xerogel and dodecanethiol resulting in a double bilayered laminar turbostratic structure. The formation of vanadium oxide nanofibers is observed after hydrothermal treatment of the thiol-intercalated xerogel, resulting in typical lengths in the range 2–6 µm and widths of about 50–500 nm. We observe concomitant hinging of the flexible nanofiber lamina at periodic hinge points in the final product on both the nanoscale and molecular level. Bar-coded nanofibers comprise alternating segments of organic–inorganic (thiols–VOx) material and are amenable to segmented, localized metal nanoparticle docking. Under certain conditions free-standing bilayered organic nanostructures are realized

    Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles

    Get PDF
    This work explores the functionalization of an organic-inorganic MoS2 lamellar compound, prepared by a Chemical Liquid Deposition Method (CLD), that has an interlamellar distance of ~5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ~85 days, and a zeta potential measured to be ζ = -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS2. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS2

    Six-fold rotationally symmetric vanadium oxide nanostructures by a morphotropic phase transition

    Get PDF
    In this work, we report the first observation of unique hierarchical six‐fold rotational symmetrical vanadium oxide based nanocomposite synthesized by a simple chemical route and highlight the first observation of a morphotropic reconstructive phase transistion from a lamellar V2O5 to that of a single crystalline V6O11 nanostructure

    Surfactant-mediated variation of band-edge emission in CdS nanocomposites

    Get PDF
    The optical-structural characteristics of the direct optical band-gap semiconducting series of surfactant template-mediated laminar (CdS)x(CdCl2)y(CnH2n+4N)z nanocomposites are reported. X-ray diffraction measurements of the nanocomposites exhibited interlaminar distances in the range 2.9-3.6 nm with observations of eighth order {0 0 l} diffraction planes indicative of a high degree of laminarity and crystallographic order. Diffuse reflectance measurements have determined that the profile of their emission spectrum is that of a direct band-gap with absorption edges in the range 2.11-2.40 eV, depending on the CdS mole fraction in the nanocomposite. Photoluminescence (PL) excitation and time-resolved PL spectroscopies give an estimate of the maximum relative absorbance of the nanocomposites at ∼420 nm while the minimum was observed at ∼560 nm. The main emission was observed at ∼700 nm with emission from doubly ionized sulphur vacancies observed at ∼615 nm at room temperature. The CdS-containing nanocomposite is thus a surfactant-mediated modular system with variable band-gap energy emission

    U-Pb zircon dating of ash fall deposits from the paleozoic paran? basin of Brazil and Uruguay: A reevaluation of the stratigraphic correlations

    Get PDF
    Ash fall layers and vitroclastic-carrying sediments distributed throughout the entire Permian stratigraphic range of the Paraná Basin (Brazil and Uruguay) occur in the Tubarão Supergroup (Rio Bonito Formation) and the Passa Dois Group (Irati, Estrada Nova/Teresina, Corumbataí, and Rio do Rasto Formations), which constitute the Gondwana 1 Supersequence. U-Pb zircon ages, acquired by SHRIMP and isotope-dissolution thermal ionization mass spectrometer (IDTIMS) from tuffs within the Mangrullo and Yaguari Formations of Uruguay, are compatible with a correlation with the Irati and parts of the Teresina and Rio do Rasto Formations, respectively, of Brazil. U-Pb zircon ages suggest maximum depositional ages for the samples: (1) Rio Bonito Formation: ages ranging from 295:8 5 3:1 to 304:0 5 5:6 Ma (Asselian, lowermost Permian), consistent with the age range of the Protohaploxypinus goraiensis subzone; (2) Irati Formation: ages ranging from 279:9 5 4:8 to 280:0 5 3:0 Ma (Artinskian, middle Permian), consistent with the occurrence of species of the Lueckisporites virkkiae zone; (3) Rio do Rasto Formation: ages ranging from 266:7 5 5:4 to 274:6 5 6:3Ma (Wordian to Roadian, middle Permian). All the SHRIMP U-Pb zircon ages are consistent with their superimposition order in the stratigraphy, the latest revisions to the Permian timescale (International Commission of Stratigraphy, 2018 version), and the most recent appraisals of biostratigraphic data. The ID-TIMS U-Pb zircon ages from the Corumbataí Formation suggest that U-Pb ages may be 110% younger than interpreted biostratigraphic ages
    corecore