1,552 research outputs found

    Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion.

    Get PDF
    Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60–70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-γ responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90− cells was also enhanced in infected mice. Interestingly, a potent induction of TNF- and IFN-γ production by CD4+ and CD90− lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system

    Comment on "On the Origin of the Highest Energy Cosmic Rays"

    Get PDF
    We show that the photodisintegration of heavy cosmic ray nuclei with energies above 10^20 eV is dominated by interactions with photons from the cosmic microwave background radiation, rather than from infrared ones. This implies that the observed air shower events with energies 2-3 10^20 eV cannot originate from Fe nuclei coming from distances beyond 10 MpcComment: 1 page, 2 figure

    Electrical properties of silicon-implanted furnace-annealed silicon-on-sapphire devices

    Get PDF
    The crystalline quality of s.o.s. layers can be improved near the silicon-sapphire interface by silicon implantation followed by recrystallisation. Device performance on such layers is markedly improved as to n-channel m.o.s.t. noise and leakage current, reverse diode current and lateral bipolar transistor gain. Minority-carrier lifetimes up to 50 ns are deduced

    Gravitational lensing as folds in the sky

    Get PDF
    We revisit the gravitational lensing phenomenon using a new visualization technique. It consists in projecting the observers sky into the source plane, what gives rise to a folded and stretched surface. This provides a clear graphical tool to visualize some interesting well-known effects, such as the development of multiple images of a source, the structure of the caustic curves, the parity of the images and their magnification as a function of the source position.Comment: 11 pages, 8 figure

    Laser annealing of silicon on sapphire

    Get PDF
    Silicon-implanted silicon-on-sapphire wafers have been annealed by 50-ns pulses from a Q-switched Nd : YAG laser. The samples have been analyzed by channeling and by omega-scan x-ray double diffraction. After irradiation with pulses of a fluence of about 5 J cm^–2 the crystalline quality of the silicon layer is found to be better than in the as-grown state

    Further Considerations on the CP Asymmetry in Heavy Majorana Neutrino Decays

    Get PDF
    We work out the thermodynamic equations for the decays and scatterings of heavy Majorana neutrinos including the constraints from unitarity. The Boltzmann equations depend on the CP asymmetry parameter which contains both, a self-energy and a vertex correction. At thermal equilibrium there is no net lepton asymmetry due to the CPT theorem and the unitarity constraint. We show explicitly that deviations from thermal equilibrium create the lepton asymmetry.Comment: 16 pages, LaTeX, 1 eps figure, 1 ps figur

    Suppression of \bbox{T_c} in superconducting amorphous wires

    Full text link
    The suppression of the mean field temperature of the superconducting transition, TcT_c, in homogeneous amorphous wires is studied. We develop a theory that gives TcT_c in situations when the dynamically enhanced Coulomb repulsion competes with the contact attraction. The theory accurately describes recent experiments on TcT_c--suppression in superconducting wires, after a procedure that minimizes the role of nonuniversal mechanisms influencing TcT_c is applied.Comment: RevTeX, 4 pages, 3 figure

    Decaying neutron propagation in the Galaxy and the Cosmic Ray anisotropy at 1 EeV

    Full text link
    We study the cosmic ray arrival distribution expected from a source of neutrons in the galactic center at energies around 1 EeV and compare it with the anisotropy detected by AGASA and SUGAR. Besides the point-like signal in the source direction produced by the direct neutrons, an extended signal due to the protons produced in neutron decays is expected. This associated proton signal also leads to an excess in the direction of the spiral arm. For realistic models of the regular and random galactic magnetic fields, the resulting anisotropy as a function of the energy is obtained. We find that for the anisotropy to become sufficiently suppressed below E\sim 10^{17.9}eV, a significant random magnetic field component is required, while on the other hand, this also tends to increase the angular spread of the associated proton signal and to reduce the excess in the spiral arm direction. The source luminosity required in order that the right ascension anisotropy be 4% for the AGASA angular exposure corresponds to a prediction for the point-like flux from direct neutrons compatible with the flux detected by SUGAR. We also analyse the distinguishing features predicted for a large statistics southern observatory.Comment: 14 pages, 6 figures, minor changes to match published versio

    Pulling a polymer out of a potential well and the mechanical unzipping of DNA

    Full text link
    Motivated by the experiments on DNA under torsion, we consider the problem of pulling a polymer out of a potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is activated and has an activation energy proportinal to the length of the chain. Above this critical value, the process is barrierless and will occur spontaneously. We use the Rouse model for the description of the dynamics of the peeling out and study the average behaviour of the chain, by replacing the random noise by its mean. The resultant mean-field equation is a nonlinear diffusion equation and hence rather difficult to analyze. We use physical arguments to convert this in to a moving boundary value problem, which can then be solved exactly. The result is that the time tpot_{po} required to pull out a polymer of NN segments scales like N2N^2. For models other than the Rouse, we argue that tpoN1+νt_{po}\sim N^{1+\nu}Comment: 11 pages, 6 figures. To appear in PhysicalReview

    `Natural Masslessness Conservation' for neutrinos in two Higgs-doublet models

    Full text link
    We present a model which supplements the Standard Electroweak Model with three right-handed neutrinos and one extra scalar doublet which does not develop a vacuum expectation value. With the aid of a discrete symmetry the neutrinos are kept strictly massless. This model has several interesting features. It has unsuppressed lepton flavour violating processes, in particular μeγ\mu \rightarrow e \gamma, hinting at the possibility that these may soon be within experimental reach. The ZZ and WW interactions become non-diagonal at one loop level. In particular, a non-trivial leptonic mixing matrix is seen to arise from the clash between the charged gauge boson and the charged scalar interactions.Comment: (Latex file, 12 pages. Two figures available upon request). CMU-preprin
    corecore