44,034 research outputs found
Fluctuating observation time ensembles in the thermodynamics of trajectories
The dynamics of stochastic systems, both classical and quantum, can be
studied by analysing the statistical properties of dynamical trajectories. The
properties of ensembles of such trajectories for long, but fixed, times are
described by large-deviation (LD) rate functions. These LD functions play the
role of dynamical free-energies: they are cumulant generating functions for
time-integrated observables, and their analytic structure encodes dynamical
phase behaviour. This "thermodynamics of trajectories" approach is to
trajectories and dynamics what the equilibrium ensemble method of statistical
mechanics is to configurations and statics. Here we show that, just like in the
static case, there is a variety of alternative ensembles of trajectories, each
defined by their global constraints, with that of trajectories of fixed total
time being just one of these. We show that an ensemble of trajectories where
some time-extensive quantity is constant (and large) but where total
observation time fluctuates, is equivalent to the fixed-time ensemble, and the
LD functions that describe one ensemble can be obtained from those that
describe the other. We discuss how the equivalence between generalised
ensembles can be exploited in path sampling schemes for generating rare
dynamical trajectories.Comment: 12 pages, 5 figure
Collisionless heating in capacitive discharges enhanced by dual-frequency excitation
We discuss collisionless electron heating in capacitive discharges excited by a combination of two disparate frequencies. By developing an analytical model, we find, contrary to expectation, that the net heating in this case is much larger than the sum of the effects occurring when the two frequencies act separately. This prediction is substantiated by kinetic simulations, which are also in excellent general quantitative agreement with the model for discharge parameters that are typical of recent experiments
Scalar Field as Dark Matter in the Universe
We investigate the hypothesis that the scalar field is the dark matter and
the dark energy in the Cosmos, wich comprises about 95% of the matter of the
Universe. We show that this hypothesis explains quite well the recent
observations on type Ia supernovae.Comment: 4 pages REVTeX, 1 eps figure. Minor changes. To appear in Classical
and Quantum Gravit
Non-equilibrium raft-like membrane domains under continuous recycling
We present a model for the kinetics of spontaneous membrane domain (raft)
assembly that includes the effect of membrane recycling ubiquitous in living
cells. We show that the domains have a broad power-law distribution with an
average radius that scales with the 1/4 power of the domain lifetime when the
line tension at the domain edges is large. For biologically reasonable
recycling and diffusion rates the average domain radius is in the tens of nm
range, consistent with observations. This represents one possible link between
signaling (involving rafts) and traffic (recycling) in cells. Finally, we
present evidence that suggests that the average raft size may be the same for
all scale-free recycling schemes.Comment: 8 pages, 5 figure
Spreading of Block Copolymer Films and Domain Alignment at Moving Terrace Steps
We investigate spreading of phase separated copolymer films, where domain
walls and thickness steps influence polymer flow. We show that at early stages
of spreading its rate is determined by slow activated flow at terrace steps
(i.e. thickness steps). At late stages of spreading, on the other hand, the
rate is determined by the flow along terraces, with diffusion-like time
dependence . This dependence is similar to de Gennes and Cazabat's
prediction for generic layered liquids, as opposed to the classical Tanner's
law of drop spreading. We also argue that chain hopping at the spreading
terrace steps should lead to the formation of aligned, defect-free domain
patterns on the growing terraces.Comment: 11 pages, 7 figures, submitted to J. Chem. Phy
QSO's from Galaxy Collisions with Naked Black Holes
In the now well established conventional view (see Rees [1] and references
therein), quasi-stellar objects (QSOs) and related active galactic nuclei (AGN)
phenomena are explained as the result of accretion of plasma onto giant black
holes which are postulated to form via gravitational collapse of the high
density regions in the centers of massive host galaxies. This model is
supported by a wide variety of indirect evidence and seems quite likely to
apply at least to some observed AGN phenomena. However, one surprising set of
new Hubble Space Telescope (HST) observations [2-4] directly challenges the
conventional model, and the well known evolution of the QSO population raises
some additional, though not widely recognized, difficulties. We propose here an
alternative possibility: the Universe contains a substantial independent
population of super-massive black holes, and QSO's are a phenomenon that occurs
due to their collisions with galaxies or gas clouds in the intergalactic medium
(IGM). This hypothesis would naturally explain why the QSO population declines
very rapidly towards low redshift, as well as the new HST data.Comment: plain TeX file, no figures, submitted to Natur
Quantum fields and "Big Rip" expansion singularities
The effects of quantized conformally invariant massless fields on the
evolution of cosmological models containing a ``Big Rip'' future expansion
singularity are examined. Quantized scalar, spinor, and vector fields are found
to strengthen the accelerating expansion of such models as they approach the
expansion singularity.Comment: 7 pages; REVTeX
Dependence of Inflationary Reconstruction upon Cosmological Parameters
The inflationary potential and its derivatives determine the spectrum of
scalar and tensor metric perturbations that arise from quantum fluctuations
during inflation. The CBR anisotropy offers a promising means of determining
the spectra of metric perturbations and thereby a means of constraining the
inflationary potential. The relation between the metric perturbations and CBR
anisotropy depends upon cosmological parameters -- most notably the possibility
of a cosmological constant. Motivated by some observational evidence for a
cosmological constant (large-scale structure, cluster-baryon fraction,
measurements of the Hubble constant and age of the Universe) we derive the
reconstruction equations and consistency relation to second order in the
presence of a cosmological constant. We also clarify previous notation and
discuss alternative schemes for reconstruction.Comment: 15 pages, LaTeX, 3 postscript figures (included with epsf), submitted
to Phys. Rev.
- …