295 research outputs found
Sub-wavelength imaging at infrared frequencies using an array of metallic nanorods
We demonstrate that an array of metallic nanorods enables sub-wavelength
(near-field) imaging at infrared frequencies. Using an homogenization approach,
it is theoretically proved that under certain conditions the incoming radiation
can be transmitted by the array of nanorods over a significant distance with
fairly low attenuation. The propagation mechanism does not involve a resonance
of material parameters and thus the resolution is not strongly affected by
material losses and has wide bandwidth. The sub-wavelength imaging with
resolution by silver rods at 30 THz is demonstrated numerically
using full-wave electromagnetic simulator.Comment: 12 pages, 16 figures, submitted to PR
Wide-angle perfect absorber/thermal emitter in the THz regime
We show that a perfect absorber/thermal emitter exhibiting an absorption peak
of 99.9% can be achieved in metallic nanostructures that can be easily
fabricated. The very high absorption is maintained for large angles with a
minimal shift in the center frequency and can be tuned throughout the visible
and near-infrared regime by scaling the nanostructure dimensions. The stability
of the spectral features at high temperatures is tested by simulations using a
range of material parameters.Comment: Submitted to Phys. Rev. Let
Electrically injected cavity polaritons
We have realised a semiconductor quantum structure that produces
electroluminescence while operating in the light-matter strong coupling regime.
The mid-infrared light emitting device is composed of a quantum cascade
structure embedded in a planar microcavity, based on the GaAs/AlGaAs material
system. At zero bias, the structure is characterised using reflectivity
measurements which show, up to room temperature, a wide polariton anticrossing
between an intersubband transition and the resonant cavity photon mode. Under
electrical injection the spectral features of the emitted light change
drastically, as electrons are resonantly injected in a reduced part of the
polariton branches. Our experiment demonstrates that electrons can be
selectively injected into polariton states up to room temperature.Comment: 10 pages, 4 figure
Wide-angle infrared absorber based on negative index plasmonic metamaterial
A metamaterials-based approach to making a wide-angle absorber of infrared
radiation is described. The technique is based on an anisotropic Perfectly
Impedance Matched Negative Index Material (PIMNIM). It is shown analytically
that a sub-wavelength in all three dimensions PIMNIM enables absorption of
close to 100% for incidence angles up to to the normal. A specific
implementation of such frequency-tunable PIMNIM based on plasmonic
metamaterials is presented. Applications to infrared imaging and coherent
thermal sources are described.Comment: To be published in Phys. Rev.
Dust in the Photospheric Environment II. Effect on the Near Infrared Spectra of L and T Dwarfs
We report an attempt to interpret the spectra of L and T dwarfs with the use
of the Unified Cloudy Model (UCM). For this purpose, we extend the grid of the
UCMs to the cases of log g = 4.5 and 5.5. The dust column density relative to
the gas column density in the observable photosphere is larger at the higher
gravities, and molecular line intensity is generally smaller at the higher
gravities. The overall spectral energy distributions (SEDs) are f_{J} < f_{H} <
f_{K} in middle and late L dwarfs, f_{J} f_{K} in early T dwarfs (L/T
transition objects), and finally f_{J} > f_{H} > f_{K} in middle and late T
dwarfs, where f_{J}, f_{H}, and f_{K} are the peak fluxes at J, H, and K bands,
respectively, in f_{nu} unit. This tendency is the opposite to what is expected
for the temperature effect, but can be accounted for as the effect of thin dust
clouds formed deep in the photosphere together with the effect of the gaseous
opacities including H_2 (CIA), H_2O, CH_4, and K I. Although the UCMs are
semi-empirical models based on a simple assumption that thin dust clouds form
in the region of T_{cr} < T < T_{cond} (T_{cr} = 1800K is an only empirical
parameter while T_{cond} about 2000K is fixed by the thermodynamical data), the
major observations including the overall SEDs as well as the strengths of the
major spectral features are consistently accounted for throughout L and T
dwarfs. In view of the formidable complexities of the cloud formation, we hope
that our UCM can be of some use as a guide for future modelings of the
ultracool dwarfs as well as for interpretation of observed data of L and T
dwarfs.Comment: 43 pages, 13 figures, to appear in Astrophys. J. (May 20, 2004) Some
minor corrections including the address of our web site, which is now read
Low Temperature Opacities
Previous computations of low temperature Rosseland and Planck mean opacities
from Alexander & Ferguson (1994) are updated and expanded. The new computations
include a more complete equation of state with more grain species and updated
optical constants. Grains are now explicitly included in thermal equilibrium in
the equation of state calculation, which allows for a much wider range of grain
compositions to be accurately included than was previously the case. The
inclusion of high temperature condensates such as AlO and CaTiO
significantly affects the total opacity over a narrow range of temperatures
before the appearance of the first silicate grains.
The new opacity tables are tabulated for temperatures ranging from 30000 K to
500 K with gas densities from 10 g cm to 10 g cm.
Comparisons with previous Rosseland mean opacity calculations are discussed. At
high temperatures, the agreement with OPAL and Opacity Project is quite good.
Comparisons at lower temperatures are more divergent as a result of differences
in molecular and grain physics included in different calculations. The
computation of Planck mean opacities performed with the opacity sampling method
are shown to require a very large number of opacity sampling wavelength points;
previously published results obtained with fewer wavelength points are shown to
be significantly in error. Methods for requesting or obtaining the new tables
are provided.Comment: 39 pages with 12 figures. To be published in ApJ, April 200
Theory of Supercoupling, Squeezing Wave Energy, and Field Confinement in Narrow Channels and Tight Bends Using Epsilon-Near-Zero Metamaterials
In this work, we investigate the detailed theory of the supercoupling,
anomalous tunneling effect, and field confinement originally identified in [M.
Silveirinha, N. Engheta, Phys. Rev. Lett. 97, 157403, (2006)], where we
demonstrated the possibility of using materials with permittivity near zero to
drastically improve the transmission of electromagnetic energy through a narrow
irregular channel with very subwavelength transverse cross-section. Here, we
present additional physical insights, describe new applications of the
tunneling effect in relevant waveguide scenarios (e.g., the "perfect" or
"super" waveguide coupling), study the effect of metal losses in the metallic
walls, and the possibility of using epsilon-near zero materials to confine
energy in a subwavelength cavity with gigantic field enhancement. In addition,
we systematically study the propagation of electromagnetic waves through narrow
channels filled with anisotropic epsilon-near zero materials. It is
demonstrated that these materials may have interesting potentials, and that for
some particular geometries the reflectivity of the channel is independent of
the specific dimensions or parameters of epsilon-near zero transition. We also
describe several realistic metamaterial implementations of the studied
problems, based on standard metallic waveguides, microstrip line
configurations, and wire media.Comment: under revie
Theory and design of quantum cascade lasers in (111) n-type Si/SiGe
Although most work towards the realization of group IV quantum cascade lasers (QCLs) has focused on valence band transitions, there are many desirable properties associated with the conduction band. We show that the commonly cited shortcomings of n-type Si/SiGe heterostructures can be overcome by moving to the (111) growth direction. Specifically, a large band offset and low effective mass are achievable and subband degeneracy is preserved. We predict net gain up to lattice temperatures of 90 K in a bound-to-continuum QCL with a double-metal waveguide, and show that a Ge interdiffusion length of at least 8 Å across interfaces is tolerable
Strong diamagnetic response of metamaterials
We demonstrate that there is a strong diamagnetic response of metamaterials,
consisting of open or closed split ring resonators (SRRs). Detailed numerical
work shows that for densely packed SRRs the magnetic permeability,
, does not approach unity, as expected for frequencies lower and
higher than the resonance frequency, . Below ,
gives values ranging from 0.9 to 0.6 depending of the width of
the metallic ring, while above , is close to 0.5.
Closed rings have over a wide frequency range independently of
the width of the ring. A simple model that uses the inner and outer current
loop of the SRRs can easily explain theoretically this strong diamagnetic
response, which can be used in magnetic levitation
Surface plasmon polaritons assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling
Metal films grown on Si wafer perforated with a periodic array of
subwavelength holes have been fabricated and anomalous enhanced transmission in
the mid-infrared regime has been observed. High order transmission peaks up to
Si(2,2) are clearly revealed due to the large dielectric constant contrast of
the dielectrics at the opposite interfaces. Si(1,1) peak splits at oblique
incidence both in TE and TM polarization, which confirms that anomalous
enhanced transmission is a surface plasmon polaritons (SPPs) assisted
diffraction phenomenon. Theoretical transmission spectra agree excellently with
the experimental results and confirm the role of SPPs diffraction by the
lattice.Comment: 4 pages, 5 figures, 26 reference
- …