86,778 research outputs found

    Non-Profit Distribution:The Scottish Approach to Private Finance in Public Services

    Get PDF

    Simulations of closed timelike curves

    Get PDF
    Proposed models of closed timelike curves (CTCs) have been shown to enable powerful information-processing protocols. We examine the simulation of models of CTCs both by other models of CTCs and by physical systems without access to CTCs. We prove that the recently proposed transition probability CTCs (T-CTCs) are physically equivalent to postselection CTCs (P-CTCs), in the sense that one model can simulate the other with reasonable overhead. As a consequence, their information-processing capabilities are equivalent. We also describe a method for quantum computers to simulate Deutschian CTCs (but with a reasonable overhead only in some cases). In cases for which the overhead is reasonable, it might be possible to perform the simulation in a table-top experiment. This approach has the benefit of resolving some ambiguities associated with the equivalent circuit model of Ralph et al. Furthermore, we provide an explicit form for the state of the CTC system such that it is a maximum-entropy state, as prescribed by Deutsch.Comment: 15 pages, 1 figure, accepted for publication in Foundations of Physic

    Decay of Magnetic Fields in the Early Universe

    Full text link
    We study the evolution of a stochastic helical magnetic field generated in the early Universe after the electroweak phase transition, using standard magnetohydrodynamics (MHD). We find how the coherence length xi, magnetic energy E_M and magnetic helicity H evolve with time. We show that the self-similarity of the magnetic power spectrum alone implies that xi ~ t^{1/2}. This in turn implies that magnetic helicity decays as H ~ t^{-2s}, and that the magnetic energy decays as E_M ~ t^{-0.5-2s}, where s is inversely proportional to the magnetic Reynolds number Re_M. These laws improve on several previous estimates.Comment: 5pp LaTeX + World Sci procs class, 3 eps figs. Talk given at Strong and Electroweak Matter, Oct 2-5 2002, Heidelber

    Comparative analysis of alternative fuels in detonation combustion

    Get PDF
    Detonation combustion prominently exhibits high thermodynamic efficiency which leads to better performance. As compared to the conventionally used isobaric heat addition in a Brayton cycle combustor, detonation uses a novel isochoric Humphrey cycle which utilises shocks and detonation waves to provide pressure-rise combustion. Such unsteady combustion has already been explored in wave rotor, pulse detonation engine and rotating detonation engine configurations as alternative technologies for the next generation of the aerospace propulsion systems. However, in addition to the better performance that the detonation mode of combustion offers, it is crucial to observe the environmental concerns as well. Therefore, this paper presents a one-dimensional numerical analysis for alternative fuels: Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algae Biofuel, and Microalgae Biofuel under detonation combustion conditions. For simplicity, the analysis is modelled using an open tube geometry. The analysis employs the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zelā€™dovichā€“von Neumannā€“Doering model and takes into account species mole, mass fraction, and enthalpies-of-formation of the reactants. Initially, minimum conditions for the detonation of each fuel are determined. Pressure, temperature, and density ratios at each stage of the combustion tube for different types of fuel are then explored systematically. Finally, the influence of different initial conditions is numerically examined to make a comparison for these fuels

    Pseudo-digital quantum bits

    Get PDF
    Quantum computers are analog devices; thus they are highly susceptible to accumulative errors arising from classical control electronics. Fast operation--as necessitated by decoherence--makes gating errors very likely. In most current designs for scalable quantum computers it is not possible to satisfy both the requirements of low decoherence errors and low gating errors. Here we introduce a hardware-based technique for pseudo-digital gate operation. We perform self-consistent simulations of semiconductor quantum dots, finding that pseudo-digital techniques reduce operational error rates by more than two orders of magnitude, thus facilitating fast operation.Comment: 4 pages, 3 figure
    • ā€¦
    corecore